Analysis of Machine Tool Spindles under Load

Article Preview

Abstract:

This paper deals with a new experimental approach to the analysis of radial, axial, and tilt error movements of machine tool spindles under load. The main focus is on the identification of error spindle movements under different machine operation conditions between 500 - 5000 rev / min and loads in the range of 50 - 500 N. Errors of the spindle movements are measured on the cylindrical workpiece using capacitance sensors for different loads. The analysis of measurements of radial, axial, and tilt error movements of machine tool spindle indicates a dependency of loads and measured errors. The integration of error measurements into novel multi-body dynamic models of machine tool spindles is very important for prediction of machine behaviour during a cutting process and for prediction of workpiece geometric accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

608-613

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Knobloch J, Holub M, Kolouch M. Laser tracker measurement for prediction of workpiece geometric accuracy. In: Fuis V, editor. Eng. Mech. 2014 - 20th Int. Conf., Svratka: Brno University of Technology Institute of Solid Mechanics, Mechatronics and Biomechanics; 2014, p.296.

Google Scholar

[2] Holub M, Michalicek M, Vetiska J, Marek J. Prediction of Machining Accuracy for Vertical Lathes. In: Jablonski, R and Brezina T, editor. Mechatronics 2013 Recent Technol. Sci. Adv., Springer International Publishing Switzerland; 2013, p.41–8.

DOI: 10.1007/978-3-319-02294-9_6

Google Scholar

[3] Holub M, Pavlik J, Opl M, Blecha P. Identification of Geometric Errors of Rotary Axes in Machine Tools. In: Jablonski, R and Brezina T, editor. MECHATRONICS Recent Technol. Sci. Adv., HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY: SPRINGER-VERLAG BERLIN; 2011, p.213.

DOI: 10.1007/978-3-642-23244-2_25

Google Scholar

[4] Marek J, Blecha P. Compensation of axes at vertical lathes. Recent Adv. Mechatronics 2008-2009, springer berlin; 2009, p.371–6.

DOI: 10.1007/978-3-642-05022-0_63

Google Scholar

[5] Abele E, Altintas Y, Brecher C. Machine tool spindle units. CIRP Ann - Manuf Technol 2010; 59: 781–802.

DOI: 10.1016/j.cirp.2010.05.002

Google Scholar

[6] Uhlmann E, Hu J. Thermal Modelling of a High Speed Motor Spindle. Procedia CIRP 2012; 1: 313–8.

DOI: 10.1016/j.procir.2012.04.056

Google Scholar

[7] Jędrzejewski J, Kowal Z, Kwaśny W, Modrzycki W. High-speed precise machine tools spindle units improving. J Mater Process Technol 2005; 162-163: 615–21.

DOI: 10.1016/j.jmatprotec.2005.02.149

Google Scholar

[8] Xu C, Zhang J, Feng P, Yu D, Wu Z. Characteristics of stiffness and contact stress distribution of a spindle–holder taper joint under clamping and centrifugal forces. Int J Mach Tools Manuf 2014; 82-83: 21–8.

DOI: 10.1016/j.ijmachtools.2014.03.006

Google Scholar

[9] Matsubara A, Yamazaki T, Ikenaga S. Non-contact measurement of spindle stiffness by using magnetic loading device. Int J Mach Tools Manuf 2013; 71: 20–5.

DOI: 10.1016/j.ijmachtools.2013.04.003

Google Scholar

[10] Fujimaki K, Mitsui K. Radial error measuring device based on auto-collimation for miniature ultra-high-speed spindles. Int J Mach Tools Manuf 2007; 47: 1677–85.

DOI: 10.1016/j.ijmachtools.2007.01.002

Google Scholar

[11] Fiala Z, Piska M, Jaros A. On the analysis of the sound spectrum at machining of the glass-polyester composite material. MM Sci J (2014).

DOI: 10.17973/mmsj.2014_03_201403

Google Scholar

[12] Brezina T, Hadas Z, Vetiska J. Simulation behavior of machine tool on the base of structural analysis in multi-body system. Proc. 15th Int. Conf. Mechatronics, MECHATRONIKA 2012, (2012).

Google Scholar

[13] Brezina T, Vetiska J, Hadas Z, Brezina L. Simulation modelling and control of mechatronic systems with flexible parts. Mechatronics Recent Technol. Sci. Adv., 2011, p.569–78.

DOI: 10.1007/978-3-642-23244-2_69

Google Scholar