[1]
S. Lyu, Knee health promotion option for osteoarthritic knee, Cartilage regeneration is possible in Osteoarthritis-Diagnosis, Treatment and Surgery, 51, (2012) 978-953.
DOI: 10.5772/26255
Google Scholar
[2]
J. Penrose, M. Holt, M. Beaugonin, Development of an accurate three-dimensional finite element knee model, University of Sheffield, Computer Methods in Biomechanics and Biomedical Engineering, 5 (4), (2002) 291–300.
DOI: 10.1080/1025584021000009724
Google Scholar
[3]
W. Wilson, C.C. van Donkelaar, B. van Rietbergen, R. Huiskes, The Role of Computational Models in the Search for the Mechanical Behavior and Damage Mechanisms of Articular Cartilage, Med. Eng. Phys., 27(10), 810-826, (2005).
DOI: 10.1016/j.medengphy.2005.03.004
Google Scholar
[4]
D. Tarnita, M. Catana, D.N. Tarnita, Contributions on the modeling and simulation of the human knee joint with applications to the robotic structures, In New Trends on Medical and Service Robotics: Challenges and Solutions, Mechanisms and Machine Science 20, (2014).
DOI: 10.1007/978-3-319-05431-5_19
Google Scholar
[5]
D. Tarnita, M. Catana, D.N. Tarnita, Modeling and Finite Element Analysis of the Human Knee Joint Affected by Osteoarthritis, Key Engineering Materials, 601, (2014) 147-150.
DOI: 10.4028/www.scientific.net/kem.601.147
Google Scholar
[6]
M. Catana, D. Tarnita, The three-dimensional modeling of the complex virtual human knee joint, Bulletin of the Polytechnic Institute of Iasi, Tom LVIII (LXII) Fasc. 3, (2012) 303–308.
Google Scholar
[7]
M. Bahraminasaba, B. Saharia, Finite element analysis of the effect of shape memory alloy on the stress distribution and contact pressure in total knee replacement, Trends Biomater. Artif. Organs, 25(3), (2011) 95-100.
Google Scholar
[8]
J.Y. Bae, K.S. Park, et al., Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis, Med Biol Eng Comput., 50, (2012) 53–60.
DOI: 10.1007/s11517-011-0840-1
Google Scholar
[9]
R.L. Arroyo, J. Sánchez, Biomechanical behavior of the knee joint using Ansys, Grupo SSC de México, San Miguel Allende, Gto, México, (2004).
Google Scholar
[10]
E. Pena, B. Calvo, M. Martinez, Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics, Clinical Biomechanics 20, (2005) 498–507.
DOI: 10.1016/j.clinbiomech.2005.01.009
Google Scholar
[11]
H. Randall, Finite element analysis of knee articular cartilage, A thesis for Master of Applied Science, Ryerson University, Toronto, Canada, (2011).
Google Scholar
[12]
M. Kubicek, F. Zdenek, Stress strain analysis of knee joint, Engineering Mechanics, 16(5), (2009) 315–322.
Google Scholar
[13]
N.H. Yang, The effect of the frontal plane tibiofemoral angle on the contact stress and strain at the knee joint, Mechanical Engineering Dissertations, Northeastern University, (2009).
DOI: 10.17760/d10018955
Google Scholar
[14]
A. Vidal, R. Lesso, et al, Analysis, simulation and prediction of contact stresses in articular cartilage of knee joint, Inst. Tecnologico de Celaya, Mexico, International Conference Ansys, (2008).
Google Scholar
[15]
H. Migaud, F. Gougeon, et al, Cinematic in vivo analysis of the knee: a comparative study of 4 types of total knee prostheses, Rev Chir Orthop Reparatrice ApparMot., 81(3), (1995) 198-210.
Google Scholar
[16]
J. Uvehammer, Knee joint kinematics, fixation and function related to joint area design in total knee arthroplasty, Acta Orthop. Scand. Suppl, 72 (299), (2001) 1-52.
DOI: 10.1080/000164702760300299
Google Scholar
[17]
M. Soudry, P.S. Walker, et al, Effects of total knee replacement design on femoral-tibial contact conditions, J Arthroplasty, 1(1), (1986) 35-45.
DOI: 10.1016/s0883-5403(86)80008-0
Google Scholar
[18]
D. Tarnita, D. Popa, D.N. Tarniţă, The virtual model of the prosthetic tibial components, Rom. Journal of Morphology and Embryology, 47(4) (2006) 339-344.
Google Scholar