Development of a Three-Dimensional Finite Element Knee Prosthesis Model

Article Preview

Abstract:

This paper presents the three-dimensional geometric modeling of the knee prosthesis components using the latest generation of CAD-CAE applications as DesignModeler and SpaceClaim under Ansys Workbench software package. The mesh generation and the contact conditions are presented. The parameterized virtual models of the knee prosthesis allow different changes in shape or dimensions which can lead to the optimization of the implant and of the biomechanics of the prosthetic knee.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-155

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Lyu, Knee health promotion option for osteoarthritic knee, Cartilage regeneration is possible in Osteoarthritis-Diagnosis, Treatment and Surgery, 51, (2012) 978-953.

DOI: 10.5772/26255

Google Scholar

[2] J. Penrose, M. Holt, M. Beaugonin, Development of an accurate three-dimensional finite element knee model, University of Sheffield, Computer Methods in Biomechanics and Biomedical Engineering, 5 (4), (2002) 291–300.

DOI: 10.1080/1025584021000009724

Google Scholar

[3] W. Wilson, C.C. van Donkelaar, B. van Rietbergen, R. Huiskes, The Role of Computational Models in the Search for the Mechanical Behavior and Damage Mechanisms of Articular Cartilage, Med. Eng. Phys., 27(10), 810-826, (2005).

DOI: 10.1016/j.medengphy.2005.03.004

Google Scholar

[4] D. Tarnita, M. Catana, D.N. Tarnita, Contributions on the modeling and simulation of the human knee joint with applications to the robotic structures, In New Trends on Medical and Service Robotics: Challenges and Solutions, Mechanisms and Machine Science 20, (2014).

DOI: 10.1007/978-3-319-05431-5_19

Google Scholar

[5] D. Tarnita, M. Catana, D.N. Tarnita, Modeling and Finite Element Analysis of the Human Knee Joint Affected by Osteoarthritis, Key Engineering Materials, 601, (2014) 147-150.

DOI: 10.4028/www.scientific.net/kem.601.147

Google Scholar

[6] M. Catana, D. Tarnita, The three-dimensional modeling of the complex virtual human knee joint, Bulletin of the Polytechnic Institute of Iasi, Tom LVIII (LXII) Fasc. 3, (2012) 303–308.

Google Scholar

[7] M. Bahraminasaba, B. Saharia, Finite element analysis of the effect of shape memory alloy on the stress distribution and contact pressure in total knee replacement, Trends Biomater. Artif. Organs, 25(3), (2011) 95-100.

Google Scholar

[8] J.Y. Bae, K.S. Park, et al., Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis, Med Biol Eng Comput., 50, (2012) 53–60.

DOI: 10.1007/s11517-011-0840-1

Google Scholar

[9] R.L. Arroyo, J. Sánchez, Biomechanical behavior of the knee joint using Ansys, Grupo SSC de México, San Miguel Allende, Gto, México, (2004).

Google Scholar

[10] E. Pena, B. Calvo, M. Martinez, Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics, Clinical Biomechanics 20, (2005) 498–507.

DOI: 10.1016/j.clinbiomech.2005.01.009

Google Scholar

[11] H. Randall, Finite element analysis of knee articular cartilage, A thesis for Master of Applied Science, Ryerson University, Toronto, Canada, (2011).

Google Scholar

[12] M. Kubicek, F. Zdenek, Stress strain analysis of knee joint, Engineering Mechanics, 16(5), (2009) 315–322.

Google Scholar

[13] N.H. Yang, The effect of the frontal plane tibiofemoral angle on the contact stress and strain at the knee joint, Mechanical Engineering Dissertations, Northeastern University, (2009).

DOI: 10.17760/d10018955

Google Scholar

[14] A. Vidal, R. Lesso, et al, Analysis, simulation and prediction of contact stresses in articular cartilage of knee joint, Inst. Tecnologico de Celaya, Mexico, International Conference Ansys, (2008).

Google Scholar

[15] H. Migaud, F. Gougeon, et al, Cinematic in vivo analysis of the knee: a comparative study of 4 types of total knee prostheses, Rev Chir Orthop Reparatrice ApparMot., 81(3), (1995) 198-210.

Google Scholar

[16] J. Uvehammer, Knee joint kinematics, fixation and function related to joint area design in total knee arthroplasty, Acta Orthop. Scand. Suppl, 72 (299), (2001) 1-52.

DOI: 10.1080/000164702760300299

Google Scholar

[17] M. Soudry, P.S. Walker, et al, Effects of total knee replacement design on femoral-tibial contact conditions, J Arthroplasty, 1(1), (1986) 35-45.

DOI: 10.1016/s0883-5403(86)80008-0

Google Scholar

[18] D. Tarnita, D. Popa, D.N. Tarniţă, The virtual model of the prosthetic tibial components, Rom. Journal of Morphology and Embryology, 47(4) (2006) 339-344.

Google Scholar