[1]
Damdelen O, Georgopoulos C, Limbachiya MC. Measuring thermal mass of sustainable concrete mixes. Computing in Civil and Building Engineering 2014; 1554-1561.
DOI: 10.1061/9780784413616.193
Google Scholar
[2]
Gül R, Okuyucu R, Türkmen I, Aydin AC. Thermo-mechanical properties of fiber reinforced raw perlite concrete. Materials Letters 61; 2007; 5145–5149.
DOI: 10.1016/j.matlet.2007.04.050
Google Scholar
[3]
Howlader MK, Rashid MH, Mallick D, Haque T. Effects of aggregate types on thermal properties of concrete. ARPN Journal of Engineering and Applied Sciences 7; 2012; 900-906.
Google Scholar
[4]
Khan MI. Factors affecting the thermal properties of concrete and applicability of its prediction models. Building and Environment 37; 2002; 607 – 614.
DOI: 10.1016/s0360-1323(01)00061-0
Google Scholar
[5]
Kim KH, Jeon SE, KIM, JK, Yang S. An experimental study on thermal conductivity of concrete. Cement and Concrete Research 33; 2003; 363–371.
DOI: 10.1016/s0008-8846(02)00965-1
Google Scholar
[6]
Marshall AL. The thermal properties of concrete. Build. Sci. 7; 1972; 167-174.
Google Scholar
[7]
Dügenci O, Haktanir T, Altun F. Experimental research for the effect of high temperature on the mechanical properties of steel fiber-reinforced concrete. Construction and Building Materials 75; 2015; 82-88.
DOI: 10.1016/j.conbuildmat.2014.11.005
Google Scholar
[8]
Khaliq W, Kodur V. Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cement and Concrete Research 41; 2011; 1112-1122.
DOI: 10.1016/j.cemconres.2011.06.012
Google Scholar
[9]
Kodur V. Properties of concrete at elevated temperature. ISRN Civil Engineering 2014; 2014; 1-15.
DOI: 10.1155/2014/468510
Google Scholar
[10]
Cook DJ, Uher C. The thermal conductivity of fibre-reinforced concrete. Cement and Concrete Research 4; 1974; 497-509.
DOI: 10.1016/0008-8846(74)90001-5
Google Scholar
[11]
Fraternali F, Ciancia V, Chencile R, Rizzano G, Incarnao L, Feo L. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Composite Structures 93; 2011; 2368–2374.
DOI: 10.1016/j.compstruct.2011.03.025
Google Scholar
[12]
Tinker JA, Cabrera JG. Modeling the thermal conductivity of concrete based on its measured density and porosity. Buildings V. Conference proceedings; 1992; 91-95.
Google Scholar
[13]
Salih AA, Mohammed HA. Effect of Steel Fibers on the Properties of Refractory Free Cement Concrete. Journal of Engineering 18; 2012; 1151-1168.
Google Scholar
[14]
Ganjian E. Relationship between porosity and thermal conductivity of concrete. PhD dissertation; Dept. of Civil Eng. The University of Leeds; (1990).
Google Scholar
[15]
Nehme SG. Porosity of concrete. PhD thesis; Dept. of Civil Eng. Budapest University of Techology and Economics; (2004).
Google Scholar
[16]
Hens H. Applied Building Physics. Berlin: Wilhelm Ernst & Sohn; (2011).
Google Scholar
[17]
Krus M. Moisture Transport and Storage Coefficients of Porous Mineral Building Materials. PhD thesis; Fraunhofer-Institut für Bauphysik; (1996).
Google Scholar
[18]
Bozsaky D. Természetes és mesterséges hőszigetelő anyagok összehasonlító vizsgálata és elemzése. PhD thesis; Széchenyi István Egyetem MTK ÉÉT; (2011).
DOI: 10.20494/tm/7/1/7
Google Scholar