Façades with Photovoltaic Elements: A Review

Article Preview

Abstract:

This paper brings an overview and comments of research and development studies of façades with photovoltaic elements that have been published mainly after 2010. Literature review is focused on the state-of-the-art aspects of building-integrated photovoltaic in façades, mainly their innovations and performance evaluation. This article also presents some current problems needed further research in this area. Also information about architectural sense of integration of photovoltaic modules in building envelopes and outlook of future of building-integrated photovoltaic is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

770-778

Citation:

Online since:

January 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. F. Ruiz, Future Vision for PV. A Vision for the future of Photovoltaic Technology up to 2030 and beyond. Welcome and introduction speech by Pablo Fernandez Ruiz, Director for Energy Research, European Commission. 28 September 2004, Brussels, Belgium, Information on https: /ec. europa. eu/research/energy/pdf/0930_fern_ruiz_en. pdf.

Google Scholar

[2] B.P. Jelle, C. Breivik, H.D. Røkenes, Building integrated photovoltaic products: A state-of-the-art review and future research opportunities, Solar Energy Materials and Solar Cells, 100 (2012) 69-96.

DOI: 10.1016/j.solmat.2011.12.016

Google Scholar

[3] G. Quesada, D. Rousse, Y. Dutil, M. Badache, S. Hallé, A comprehensive review of solar façades. Transparent and translucent solar façades, Renewable and Sustainable Energy Reviews, 16 (2012) 2643– 2651.

DOI: 10.1016/j.rser.2012.02.059

Google Scholar

[4] G. Quesada, D. Rousse, Y. Dutil, M. Badache, S. Hallé, A comprehensive review of solar façades. Opaque solar façades, Renewable and Sustainable Energy Reviews, 16 (2012) 2820– 2832.

DOI: 10.1016/j.rser.2012.01.078

Google Scholar

[5] C. Lai, S. Hokoi, Solar façades: A review. Building and Environment, 91 (2015) 152–165.

DOI: 10.1016/j.buildenv.2015.01.007

Google Scholar

[6] T. T. Chow, A review on photovoltaic/thermal hybrid solar technology, Applied Energy, 87 (2010) 365–379.

DOI: 10.1016/j.apenergy.2009.06.037

Google Scholar

[7] I. Cerón, E. Caamaño-Martín, F. J. Neila, State-of-the-art, of building integrated photovoltaic products, Renewable Energy, 58 (2013) 127–133.

DOI: 10.1016/j.renene.2013.02.013

Google Scholar

[8] B. Paridaa, S. Iniyanb, R. Goic, A review of solar photovoltaic Technologies, Renewable and Sustainable Energy Reviews, 15 (2011) 1625–1636.

DOI: 10.1016/j.rser.2010.11.032

Google Scholar

[9] T. Ma, H. Yang, Y. Zhang, L. Lu, X. Wang, Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook, Renewable and Sustainable Energy Reviews, 43 (2015) 1273–1284.

DOI: 10.1016/j.rser.2014.12.003

Google Scholar

[10] Guide to BIPV. Building Integrated Photovoltaic. Polysolar Limited (2012).

Google Scholar

[11] P. Heinstein, C. Ballif, L. -E. Perret-Aebi, Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers and Myths, Green, 3 (2013) 125–156.

DOI: 10.1515/green-2013-0020

Google Scholar

[12] R. Loonen, M. Trčka, D. Cóstola, J.L.M. Hensen, Climate adaptive building shells: State-of-the-art and future challenges, Renewable and Sustainable Energy Reviews, 25 (2013) 483-493.

DOI: 10.1016/j.rser.2013.04.016

Google Scholar

[13] J. K. Tonui, Y. Tripanagnostopoulos, Air-cooled PV/T solar collectors with low cost performance improvements. Solar Energy, 81 (2007) 498–511.

DOI: 10.1016/j.solener.2006.08.002

Google Scholar

[14] M. A. Hasan, K. Sumathy, Photovoltaic thermal module concepts andt heir performance analysis: A review. Renewable and Sustainable Energy Reviews, 14 (2010) 1845–1859.

DOI: 10.1016/j.rser.2010.03.011

Google Scholar

[15] R-H. Ma, Y-C. Chen, BIPV-Powered Smart Windows Utilizing Photovoltaic and Electrochromic Devices, Sensors, 12 (2012) 359-372.

DOI: 10.3390/s120100359

Google Scholar

[16] F. Frontini, M. Marzoli, N. Doust, Investigation of different simulation tools for solar photovoltaic modules. Building Simulation Applications, BSA 2013, 1st IBPSA Italy conference, Bozen-Bolzano, 30th January – 1st February 2013, 89–94.

Google Scholar

[17] Y. Chen, A. Athienitis, P. Fazio, Modelling of High-performance Envelope and Façade Integrated Photovoltaic/Solar Thermal Systems for High-Latitude Applications, Proceedings of eSim 2012: The Canadian Conference on Building Simulation, May 1-4, 2012 Halifax Nova Scotia, 108-121.

DOI: 10.1061/9780784412473.020

Google Scholar

[18] D. Du, J. Darkwa, G. Kokogiannakis, Thermal management systems for Photovoltaics (PV) installations: A critical review, Solar Energy, 97 (2013) 238–254.

DOI: 10.1016/j.solener.2013.08.018

Google Scholar

[19] M. Bayoumi, D. Fink, Maximizing the performance of an energy generating façade in terms of energy saving strategies, Renewable Energy, 64 (2014) 294–305.

DOI: 10.1016/j.renene.2013.11.054

Google Scholar

[20] D. Brandl, T. Mach, M. Grobbauer, C. Hochenauer, Analysis of ventilation effects and the thermal behaviour ofmultifunctional fac¸ ade elements with 3D CFD models, Energy and Buildings, 85 (2014) 305–320.

DOI: 10.1016/j.enbuild.2014.09.036

Google Scholar

[21] B. K. Koyunbaba, Z. Yilmaz, The comparison of Trombe wall systems with single glass, double glass and PV panels, Renewable Energy, 45 (2012) 111–118.

DOI: 10.1016/j.renene.2012.02.026

Google Scholar

[22] P. Pikk, A. Annuk, Case study of increasing photovoltaic energy solar fraction in a conventional office building in northern latitudes, Agronomy Research, 12 (2014) 563–574.

Google Scholar

[23] L. Olivieri, E. Caamaño-Martín, F. J. Moralejo-Vázquez, N. Martín-Chivelet, F. Olivieri, F. J. Neila-Gonzalez, Energy saving potential of semi-transparent photovoltaic elements for building integration, Energy, 76 (2014) 572–583.

DOI: 10.1016/j.energy.2014.08.054

Google Scholar

[24] L. Gaillard, S. Giroux-Julien, Ch. Ménézo, H. Pabiou, Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions, Solar Energy 103 (2014) 223–241.

DOI: 10.1016/j.solener.2014.02.018

Google Scholar

[25] J. W. Lee, J. Park, H. -J. Jung, A feasibility study on a building's window system based on dye-sensitized solar cells, Energy and Buildings, 81 (2014) 38–47.

DOI: 10.1016/j.enbuild.2014.06.010

Google Scholar

[26] T. Miyazaki, A. Akisawa, T. Kashiwagi, Energy savings of office use by the use of semi-transparent solar cells for windows. Renewable Energy, 30 (2005) 281–304.

DOI: 10.1016/j.renene.2004.05.010

Google Scholar

[27] R. Alghamedi, M. Vasiliev, M. Nur-E-Alam, K. Alameh, Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows, Scientific Reports, 4 (2014) Article 6632, London UK, DOI: 10. 1038/srep06632, 9 p.

DOI: 10.1038/srep06632

Google Scholar

[28] J. Yao, An investigation into the impact of movable solar shades on energy, indoor thermal and visual comfort improvements, Buildings and Environment, 71 (2014) 24–32.

DOI: 10.1016/j.buildenv.2013.09.011

Google Scholar

[29] M. Khamooshi, H. Salati, F. Egelioglu, A. H. Faghiri, J. Tarabishi, S. Babadi, A Review of Solar Photovoltaic Concentrators, International Journal of Photoenergy, Article ID 958521 (2014) 1–17.

DOI: 10.1155/2014/958521

Google Scholar

[30] H. Davidsson, B. Peres, B. Karlsson, Performance of a multifunctional PV/T hybrid solar window. Solar Energy, 84 (2010) 365–372.

DOI: 10.1016/j.solener.2009.11.006

Google Scholar

[31] X. Xu, S. Van Dessel, A. Messac, Study of the performance of thermoelectric modules for use in active building envelopes, Building and Environment, 42 (2007) 1489–1502.

DOI: 10.1016/j.buildenv.2005.12.021

Google Scholar

[32] S. Van Dessel, B. Foubert, Active thermal insulators: Finite elements modeling and parametric study of thermoelectric modules integrated into a double pane glazing system, Energy and Buildings, 42 (2010) 1156–1164.

DOI: 10.1016/j.enbuild.2010.02.007

Google Scholar

[33] A. Waqas, Z. U. Din, Phase change material (PCM) storage for free cooling of buildings – A review, Renewable and Sustainable Energy Reviews, 18 (2013) 607–625.

DOI: 10.1016/j.rser.2012.10.034

Google Scholar

[34] S. Al-Saadi, Z. Zhai, Modeling phase change materials embedded in building enclosure: A review, Renewable and Sustainable Energy Reviews, 21 (2013) 659–673.

DOI: 10.1016/j.rser.2013.01.024

Google Scholar

[35] F. Kuznik, D. David, K. Johannes, J. -J. Roux, A review on phase change materials integrated in building walls, Renewable and Sustainable Energy Reviews, 15 (2011) 379–391.

DOI: 10.1016/j.rser.2010.08.019

Google Scholar

[36] Y. Dutil, D. R. Rousse, N. B. Salah, S. Lassue, L. Zalewski, A review on phase-change materials: Mathematical modeling and simulations, Renewable and Sustainable Energy Reviews, 15 (2011) 112–130.

DOI: 10.1016/j.rser.2010.06.011

Google Scholar

[37] L. Aeleneia, R. Pereiraa, A. Ferreiraa, H. Gonçalvesa, A. Joyce, Building Integrated Photovoltaic System with integral thermal storage: a case study, Energy Procedia 58 (2014) 172 – 178.

DOI: 10.1016/j.egypro.2014.10.425

Google Scholar

[38] Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Official Journal of the European Union, L 153/13.

Google Scholar

[39] S. Attia, M. Hamdyc, W. O'Briend, S. Carluccie, Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design, Energy and Buildings, 60 (2013) 110–124.

DOI: 10.1016/j.enbuild.2013.01.016

Google Scholar

[40] B. van Berkel, T. Minderhoud, A. Piber, G. Gijzen, Design Innovation from PV-module to Building Envelope: Architectural Layering and Non Apparent Repetition, 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 22 – 26 September 2014, 3606–3612.

Google Scholar

[41] B.P. Jelle, C. Breivik, The path to the building integrated photovoltaics of tomorrow, Energy Procedia 20 ( 2012 ) 78 – 87.

DOI: 10.1016/j.egypro.2012.03.010

Google Scholar