Optimized Wang Tiles Generation for Heterogeneous Materials Modelling

Article Preview

Abstract:

The paper deals with a modelling of random heterogeneous materials composed of circular solid particles within a matrix. The concept of Wang tiling is utilized to generate material patterns. Wang tiling principles enable to create random heterogeneous structures with high reduction of periodicity artefacts in comparison with the traditional approach of the Periodic Unit Cell (PUC). A packing algorithm based on molecular dynamics for Wang tiles generation is introduced. During the process of generation particles grow, move and collide with tile edges and with each other in order to achieve required or optimal particle placements without an overlapping. A set of Wang tiles include eight different tiles with specific boundary conditions which allow composing of random heterogeneous materials applying a stochastic tiling algorithm. An optimization technique based on the Particle Swarm Optimization (PSO) is utilized to get a material model with similar statistical information compared with a reference pattern. Due to the nature of investigated materials the Radial Distribution Function (RDF) was chosen as a tool for statistical description.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-190

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bacigalupo, A. and L. Gambarotta. Second-order computational homogenization of heterogeneous materials with periodic microstructure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 2010, 90(10-11): 796-811. ISSN 00442267.

DOI: 10.1002/zamm.201000031

Google Scholar

[2] Kumar, N. C., K. Matouš, and P. H. Geubelle. Reconstruction of periodic unit cells of multimodal random particulate composites using genetic algorithms. Computational materials science, 2008, 42(2): 352-367. DOI: 10. 1016/j. commatsci. 2007. 07. 043.

DOI: 10.1016/j.commatsci.2007.07.043

Google Scholar

[3] Collins, B. C., K. Matouš and D. Rypl. Three-dimensional reconstruction of statistically optimal unit cells of multimodal particulate composites. International Journal for Multiscale Computational Engineering, 2010, 8(5): 489-507. DOI: 10. 1615/intjmultcompeng. v8. i5. 50.

DOI: 10.1615/intjmultcompeng.v8.i5.50

Google Scholar

[4] Wang, H. Proving theorems by pattern recognition-II. Bell system technical journal, 1961, 40(1): 76-102. DOI: 10. 1007/978-94-009-2356-0_6.

DOI: 10.1002/j.1538-7305.1961.tb03975.x

Google Scholar

[5] Lagae, A. and P. Dutré. An alternative for Wang tiles. ACM Transactions on Graphics (TOG), 2006, 25(4): 1442-1459. DOI: 10. 1145/1183287. 1183296.

DOI: 10.1145/1183287.1183296

Google Scholar

[6] Yan, H., S. H. Park, G. Finkelstein, J. H. Reif and T. H. Labean. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 2003, 301. 5641: 911-914. DOI: 10. 3410/f. 1016757. 201997.

DOI: 10.1126/science.1089389

Google Scholar

[7] Novák, J., A. Kučerová and J. Zeman. Compressing random microstructures via stochastic Wang tilings. Physical Review E, 2012, 86(4): DOI: 10. 1103/physreve. 86. 040104.

DOI: 10.1103/physreve.86.040104

Google Scholar

[8] Doškář, M., J. Novák and J. Zeman. Aperiodic compression and reconstruction of real-world material systems based on Wang tiles. Physical Review E. 2014, 90(6). DOI: 10. 1103/physreve. 90. 062118.

DOI: 10.1103/physreve.90.062118

Google Scholar

[9] Rahmani, H. Packing degree optimization of arbitrary circle arrangements by genetic algorithm. Granular Matter. 2014, 16(5): 143-161. DOI: 10. 1007/978-0-387-45676-8_11.

DOI: 10.1007/s10035-014-0513-5

Google Scholar

[10] Lubachevsky, B. D. and F. H. Stillinger. Geometric properties of random disk packings. Journal of Statistical Physics, 1990, 60(5-6): 561-583. DOI: 10. 1007/bf01025983.

DOI: 10.1007/bf01025983

Google Scholar

[11] Kochevets, S. V. Random sphere packing model of heterogeneous propellants. Ph. D. Thesis, University of Illinois at Urbana-Champaign, (2002).

Google Scholar

[12] Donev, A., S. Torquato, F. H. Stillinger and R. Connely. A linear programming algorithm to test for jamming in hard-sphere packings. Journal of Computational Physics, 2004, 197(1): 139-166. DOI: 10. 1016/j. jcp. 2003. 11. 022.

DOI: 10.1016/j.jcp.2003.11.022

Google Scholar

[13] Cohen, M., F. J. Shade, S. Hiller and O. Deussen. Wang tiles for image and texture generation. ACM, 2003. ISBN 10. 1145/1201775. 882265.

DOI: 10.1145/1201775.882265

Google Scholar

[14] Šedlbauer, D. Heterogeneous Material Modelling via Dynamic Packing of Stochastic Wang Tiles In: Proceedings of the 4th Conference Nano & Macro Mechanics. Prague, Czech Technical University in Prague, 2013, 187-192. ISBN 978-80-01-05332-4.

Google Scholar

[15] Axelsen, M. Quantitative description of the morphology and microdamage of composite materials. PhD thesis, Aalborg University, (1995).

Google Scholar

[16] Kennedy, J., R. C. Eberhart. Particle Swarm Optimization. 1995 IEEE International Conference of Neural Networks Proceedings, 1995, 4: 1942 - 1948. ISBN: 0-7803-2769-1.

Google Scholar