[1]
Bacigalupo, A. and L. Gambarotta. Second-order computational homogenization of heterogeneous materials with periodic microstructure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 2010, 90(10-11): 796-811. ISSN 00442267.
DOI: 10.1002/zamm.201000031
Google Scholar
[2]
Kumar, N. C., K. Matouš, and P. H. Geubelle. Reconstruction of periodic unit cells of multimodal random particulate composites using genetic algorithms. Computational materials science, 2008, 42(2): 352-367. DOI: 10. 1016/j. commatsci. 2007. 07. 043.
DOI: 10.1016/j.commatsci.2007.07.043
Google Scholar
[3]
Collins, B. C., K. Matouš and D. Rypl. Three-dimensional reconstruction of statistically optimal unit cells of multimodal particulate composites. International Journal for Multiscale Computational Engineering, 2010, 8(5): 489-507. DOI: 10. 1615/intjmultcompeng. v8. i5. 50.
DOI: 10.1615/intjmultcompeng.v8.i5.50
Google Scholar
[4]
Wang, H. Proving theorems by pattern recognition-II. Bell system technical journal, 1961, 40(1): 76-102. DOI: 10. 1007/978-94-009-2356-0_6.
DOI: 10.1002/j.1538-7305.1961.tb03975.x
Google Scholar
[5]
Lagae, A. and P. Dutré. An alternative for Wang tiles. ACM Transactions on Graphics (TOG), 2006, 25(4): 1442-1459. DOI: 10. 1145/1183287. 1183296.
DOI: 10.1145/1183287.1183296
Google Scholar
[6]
Yan, H., S. H. Park, G. Finkelstein, J. H. Reif and T. H. Labean. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 2003, 301. 5641: 911-914. DOI: 10. 3410/f. 1016757. 201997.
DOI: 10.1126/science.1089389
Google Scholar
[7]
Novák, J., A. Kučerová and J. Zeman. Compressing random microstructures via stochastic Wang tilings. Physical Review E, 2012, 86(4): DOI: 10. 1103/physreve. 86. 040104.
DOI: 10.1103/physreve.86.040104
Google Scholar
[8]
Doškář, M., J. Novák and J. Zeman. Aperiodic compression and reconstruction of real-world material systems based on Wang tiles. Physical Review E. 2014, 90(6). DOI: 10. 1103/physreve. 90. 062118.
DOI: 10.1103/physreve.90.062118
Google Scholar
[9]
Rahmani, H. Packing degree optimization of arbitrary circle arrangements by genetic algorithm. Granular Matter. 2014, 16(5): 143-161. DOI: 10. 1007/978-0-387-45676-8_11.
DOI: 10.1007/s10035-014-0513-5
Google Scholar
[10]
Lubachevsky, B. D. and F. H. Stillinger. Geometric properties of random disk packings. Journal of Statistical Physics, 1990, 60(5-6): 561-583. DOI: 10. 1007/bf01025983.
DOI: 10.1007/bf01025983
Google Scholar
[11]
Kochevets, S. V. Random sphere packing model of heterogeneous propellants. Ph. D. Thesis, University of Illinois at Urbana-Champaign, (2002).
Google Scholar
[12]
Donev, A., S. Torquato, F. H. Stillinger and R. Connely. A linear programming algorithm to test for jamming in hard-sphere packings. Journal of Computational Physics, 2004, 197(1): 139-166. DOI: 10. 1016/j. jcp. 2003. 11. 022.
DOI: 10.1016/j.jcp.2003.11.022
Google Scholar
[13]
Cohen, M., F. J. Shade, S. Hiller and O. Deussen. Wang tiles for image and texture generation. ACM, 2003. ISBN 10. 1145/1201775. 882265.
DOI: 10.1145/1201775.882265
Google Scholar
[14]
Šedlbauer, D. Heterogeneous Material Modelling via Dynamic Packing of Stochastic Wang Tiles In: Proceedings of the 4th Conference Nano & Macro Mechanics. Prague, Czech Technical University in Prague, 2013, 187-192. ISBN 978-80-01-05332-4.
Google Scholar
[15]
Axelsen, M. Quantitative description of the morphology and microdamage of composite materials. PhD thesis, Aalborg University, (1995).
Google Scholar
[16]
Kennedy, J., R. C. Eberhart. Particle Swarm Optimization. 1995 IEEE International Conference of Neural Networks Proceedings, 1995, 4: 1942 - 1948. ISBN: 0-7803-2769-1.
Google Scholar