[1]
P. Konecny, J. Teslik and M. Hamala. Mechanical and Physical Properties of Straw Bales. Adv. Mater. Res. 649 (2013) 250-253.
DOI: 10.4028/www.scientific.net/amr.649.250
Google Scholar
[2]
R. Ingeli, B. Vavrovic and M. Cekon. Thermal Bridges Minimizing through Typical Details in Low Energy Designing. Adv. Mater. Res. 899 (2014) 62-65.
DOI: 10.4028/www.scientific.net/amr.899.62
Google Scholar
[3]
M. Palko. House in Passive Standard - Thermal Bridges. Adv. Mater. Res. 99 (2014) 42-45.
Google Scholar
[4]
A. Capozzoli, A. Gorrino and V. Corrado. A building thermal bridges sensitivity analysis. Appl. Energ. 107 (2013) 229-243.
DOI: 10.1016/j.apenergy.2013.02.045
Google Scholar
[5]
J. Zach and J. Hroudova. Study of the Properties of the Environmentally Friendly Insulation Materials. Adv. Mater. Res. 899 (2014) 435-439.
DOI: 10.4028/www.scientific.net/amr.899.435
Google Scholar
[6]
L. Kucerova, M. Cernikova and B. Hruba. Thermal Properties of Wooden Buildings in Relation to Computer Software. Adv. Mater. Res. 899 (2014) 193-196.
Google Scholar
[7]
I. Skotnicova, Z. Galda, P. Tymova and L. Lausova. Experimental measurements and numerical simulations of dynamic thermal performance of external timber frame wall. Adv. Mater. Res. 899 (2014) 988-999.
DOI: 10.4028/www.scientific.net/amr.899.126
Google Scholar
[8]
H. Viot, A. Sempey, M. Pauly and L. Mora. Comparison of different methods for calculating thermal bridges: Application to wood-frame buildings. Build. Envir. 93(P) (2015) 339-348.
DOI: 10.1016/j.buildenv.2015.07.017
Google Scholar
[9]
Y. Gao, J. Roux, L. Zhao and Y. Liang. Dynamical building simulation: A low order model for thermal bridges losses. Energ. Build. 40 (2008) 2236-2243.
DOI: 10.1016/j.enbuild.2008.07.003
Google Scholar