Recent Trend of Solar Tracking System for Electric Power Conversion

Article Preview

Abstract:

In this article, we simply design the solar tracking system and construct a solar collector system for year 2015 in Bangkok, Thailand. The analytical model is calculated via altitudes and azimuth angles of the sun. Our experimental result is agreement well with the calculation in terms of altitude and azimuth. This solar tracking system is therefore applied to a dish solar collector showing the thermal energy of 961.69 W at a maximum temperature of 543.3K with a maximum electric power of 3.395W from our thermoelectric modules.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

731-736

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.T.A. Khan, S.M.S. Tanzil, R. Rahman, S.M.S. Alam, Design and construction of an automatic solar tracking system, 6th Int. Conf. Elec. Compt. Eng. (ICECE) (2010) 326-329.

DOI: 10.1109/icelce.2010.5700694

Google Scholar

[2] U.K. Okpeki, S.O. Otuagoma, Design and construction of a bi–directional solar tracking, Int. J. Eng. Sci. 2(5) (2013) 32-38.

Google Scholar

[3] Y.C. Park, Y.H. Kang, Design and implementation of two axes sun tracking system for the parabolic dish concentrator, ISES2001 Solar World Congress, 2001, p.749–760.

Google Scholar

[4] X. Jin, G. Xu, R. Zhou, X. Luo, Y. Quan, A sun tracking system design for a large dish solar concentrator, Clean Coal Energy, 2(2B) (2013) 16-30.

DOI: 10.4236/ijcce.2013.22b004

Google Scholar

[5] P. Roth, A. Georgiev, H. Boudinov, Design and construction of a system for sun-tracking, Renew. Energy 29(3) (2004) 393-402.

DOI: 10.1016/s0960-1481(03)00196-4

Google Scholar

[6] Y. Rizal, S.H. Wibowo, Feriyadi, Application of solar position algorithm for sun-tracking system, Energy. Proc. 32 (2013) 160-165.

DOI: 10.1016/j.egypro.2013.05.021

Google Scholar

[7] M. Mirdanies, Astronomy algorithm simulation for two degrees of freedom of solar tracking mechanism using C language, Energy Proc. 68 (2015) 60-67.

DOI: 10.1016/j.egypro.2015.03.233

Google Scholar

[8] L. Morison, Introduction to Astronomy and Cosmology, John Wiley & Sons, London, (2008).

Google Scholar

[9] S. Ray, Calculation of sun position and tracking the path of sun for a particular geographical location, Int. J. Emer. Technol. Adv. Eng. 2(9) (2012) 81-84.

Google Scholar

[10] W.B. Stine, R.W. Harrigan, Solar Energy Fundamentals and Design: With Computer Applications, John Wiley & Sons, New York, (1985).

Google Scholar

[11] G. Prinsloo, R. Dobson, Solar Tracking, Prinsloo, South Africa, (2014).

Google Scholar

[12] J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, John Wiley, New York, (2013).

Google Scholar

[13] N.D. Kaushika, K.S. Reddy, Performance of a low cost solar paraboloidal dish steam generating system, Energy Conversion Mgt. 41 (2000) 713-726.

DOI: 10.1016/s0196-8904(99)00133-8

Google Scholar

[14] R.Y. Nuwayhid, F. Mrad, R. Abu-Said, The realization of a simple solar tracking concentrator for university research applications, Renew. Energy 24(2) (2001) 207-222.

DOI: 10.1016/s0960-1481(00)00191-9

Google Scholar

[15] S. Pairoj, A parabolic solar concentrator with different receiver materials, Master Thesis, King Mongkut's Institute of Technology Ladkrabang, Thailand.

Google Scholar

[16] P. Lynch, The equation of time and the Analemma, Bull. Irish Math. Soc. 69 (2012) 47-56.

DOI: 10.33232/bims.0069.47.56

Google Scholar