[1]
V. Granville, M. Krivanek, J.P. Rasson, Simulated annealing: a Proof of Convergence Pattern Analysis and Machine Intelligence, IEEE Tran. 16 (1994) 652–656.
DOI: 10.1109/34.295910
Google Scholar
[2]
A. Lokketangen,K. Jornsten, S. Storoy, Tabu Search within a Pivot and Complement Framework, Int. Tran. Operat. Res. 1 (1994) 305-316.
DOI: 10.1111/1475-3995.d01-42
Google Scholar
[3]
B.A. Garro, R.A. Vázquez, Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms, Comput. Intell. Neurosci. (2015) 1-20.
DOI: 10.1155/2015/369298
Google Scholar
[4]
F. Cus, J. Balic, Optimisation of Cutting Process by GA Approach, Robot. Com. Integ. Manuf, 19 (2003) 113–121.
Google Scholar
[5]
M. Dorigo, V. Maniezzo, A. Colorni, Ant System: Optimisation by a Colony of Cooperating Agents, IEEE Tran. Part B. 26 (1996) 29-41.
DOI: 10.1109/3477.484436
Google Scholar
[6]
R. Storn, K. Price, System Design by Constraint Adaptation and Deferential Evolution, J. Global Optim. 11 (1997) 341–359.
Google Scholar
[7]
J. Brest, S. Greiner, B. Boscovic, M. Mernik, V. Zumer, Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems, IEEE Tran. on Evo. Com. 10 (2006) 646-657.
DOI: 10.1109/tevc.2006.872133
Google Scholar
[8]
A. Shamekhi. An Improved Differential Evolution Optimization Algorithm, Int. J. Res. Rev. Appl. Sci. 15 (2013) 132-145.
Google Scholar
[9]
M. Clerc, J. Kennedy, The Particle Swarm-Explosion Stability and Convergence in a Multidimensional Complex Space, IEEE Tran. on Evo. Com. 6 (2002) 58-73.
DOI: 10.1109/4235.985692
Google Scholar
[10]
D.T. Pham, M. Castellani, The Bees Algorithm – Modelling Foraging Behaviour to Solve Continuous Optimisation Problems, Proc. Imech E, Part C. 12 (2009) 2919-2938.
DOI: 10.1243/09544062jmes1494
Google Scholar
[11]
K.S. Lee, Z.W. Geem, A New Meta-heuristic Algorithm for Con. Eng. Optimisation: Harmony Search Theory: Meth. Appl. Mech. Eng. 194 (2004) 3902–3933.
Google Scholar
[12]
L. Wang, C. Fang, An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem, Inform. Sci. 181 (2011) 4804–4822.
DOI: 10.1016/j.ins.2011.06.014
Google Scholar
[13]
J.V. Kumar, D.M.V. Kumar, Generation bidding strategy in a pool based electricity market using Shuffled Frog Leaping Algorithm, Appl. Soft Comput. 21 (2014) 407-414.
DOI: 10.1016/j.asoc.2014.03.027
Google Scholar
[14]
A.S. Bhagade, P.V. Puranik, Artificial Bee Colony (ABC) Algorithm for Vehicle Routing Optimization Problem, Int. J. Soft Comput. Eng. 2 (2012) 329-333.
Google Scholar
[15]
S. Das, P.N. Suganthan, Differential Evolution: A Survey of the State-of-the-Art, IEEE Tran. on Evo. Com. 15 (2011) 4-31.
Google Scholar
[16]
M. Iwan, R. Akmeliawatib, T. Faisala, H.M. Assadi, Performance Comparison of Differential Evolution and Particle Swarm Optimization In Constrained Optimization, Proc. Eng. 41 (2012) 1323–1328.
DOI: 10.1016/j.proeng.2012.07.317
Google Scholar
[17]
M. Eslamian, S.H. Hosseinian, B. Vahidi, Bacterial foraging-based solution to the unitcommitment problem, IEEE Trans. Power Syst. 24(3) (2009) 1478–1488.
DOI: 10.1109/tpwrs.2009.2021216
Google Scholar
[18]
H. Elbehairy, E. Elbeltagi, T. Hegazy, Comparison of two evolutionary algorithms for optimization of bridge deck repairs, Comput. Aided Civ. Infrastruct. Eng. 21 (2006) 561–572.
DOI: 10.1111/j.1467-8667.2006.00458.x
Google Scholar
[19]
A.R. Vahed, A.H. Mirzaei, Solving a bi-criteria permutation flow-shop problem using shuffled frog-leaping algorithm , Soft Computing. Springer-Verlag, New York, (2007) 435-452.
DOI: 10.1007/s00500-007-0210-y
Google Scholar
[20]
Z. Khan, L.B. Prasad, T. Singhl, Machine Condition Optimisation by Genetic Algorithms and Simulated, Comput. Ops Res. 24 (1997) 647-657.
Google Scholar
[21]
B. Amiri, M. Fathian, A. Maroosi, Application of shuffled frog-leaping algorithm on clustering, Int. J. Ad. Manuf. Tech. 45 (2009) 199-209.
DOI: 10.1007/s00170-009-1958-2
Google Scholar
[22]
N. Chai-ead, P. Aungkulanon, P. Luangpaiboon, Bees and firefly algorithms for noisy non-linear optimisation problems. Prof. Int. Multiconference of Engineers and Computer Scientists 2011-2 (2011) 1449–1454.
DOI: 10.1142/9789814390019_0005
Google Scholar
[23]
P. Aungkulanon, N. Chai-ead, P. Luangpaiboon, Simulated manufacturing process improvement via particle swarm optimisation and firefly algorithms, Prof. Int. Multiconference of Engineers and Computer Scientists, 2011-2 (2011) 1123–1128.
DOI: 10.1142/9789814390019_0017
Google Scholar