Performance Studies on Differential Evolution Algorithm and Shuffled Frog-Leaping Algorithm for Simulated Manufacturing Problems

Article Preview

Abstract:

The real world engineering problems are complex associated with lot of factors. The objective of mathematic models in simulated manufacturing problems are to minimize cost or maximize profits while satisfying the constraints. The purpose of this article was to study two algorithms for testing their efficiency in solving non-linear optimization problems and simulated manufacturing problems. A well-known meta-heuristic approach called Differential Evolution (DE) was compared with Shuffled Frog-leaping Algorithm (SFLA) in term of mean, maximum, minimum, and standard deviation of the solution. SFLA was better than DE in terms of the performance to finding optimal solutions because of the unique process of memeplex, which can increase speed of convergence and find turning parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

858-863

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Granville, M. Krivanek, J.P. Rasson, Simulated annealing: a Proof of Convergence Pattern Analysis and Machine Intelligence, IEEE Tran. 16 (1994) 652–656.

DOI: 10.1109/34.295910

Google Scholar

[2] A. Lokketangen,K. Jornsten, S. Storoy, Tabu Search within a Pivot and Complement Framework, Int. Tran. Operat. Res. 1 (1994) 305-316.

DOI: 10.1111/1475-3995.d01-42

Google Scholar

[3] B.A. Garro, R.A. Vázquez, Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms, Comput. Intell. Neurosci. (2015) 1-20.

DOI: 10.1155/2015/369298

Google Scholar

[4] F. Cus, J. Balic, Optimisation of Cutting Process by GA Approach, Robot. Com. Integ. Manuf, 19 (2003) 113–121.

Google Scholar

[5] M. Dorigo, V. Maniezzo, A. Colorni, Ant System: Optimisation by a Colony of Cooperating Agents, IEEE Tran. Part B. 26 (1996) 29-41.

DOI: 10.1109/3477.484436

Google Scholar

[6] R. Storn, K. Price, System Design by Constraint Adaptation and Deferential Evolution, J. Global Optim. 11 (1997) 341–359.

Google Scholar

[7] J. Brest, S. Greiner, B. Boscovic, M. Mernik, V. Zumer, Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems, IEEE Tran. on Evo. Com. 10 (2006) 646-657.

DOI: 10.1109/tevc.2006.872133

Google Scholar

[8] A. Shamekhi. An Improved Differential Evolution Optimization Algorithm, Int. J. Res. Rev. Appl. Sci. 15 (2013) 132-145.

Google Scholar

[9] M. Clerc, J. Kennedy, The Particle Swarm-Explosion Stability and Convergence in a Multidimensional Complex Space, IEEE Tran. on Evo. Com. 6 (2002) 58-73.

DOI: 10.1109/4235.985692

Google Scholar

[10] D.T. Pham, M. Castellani, The Bees Algorithm – Modelling Foraging Behaviour to Solve Continuous Optimisation Problems, Proc. Imech E, Part C. 12 (2009) 2919-2938.

DOI: 10.1243/09544062jmes1494

Google Scholar

[11] K.S. Lee, Z.W. Geem, A New Meta-heuristic Algorithm for Con. Eng. Optimisation: Harmony Search Theory: Meth. Appl. Mech. Eng. 194 (2004) 3902–3933.

Google Scholar

[12] L. Wang, C. Fang, An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem, Inform. Sci. 181 (2011) 4804–4822.

DOI: 10.1016/j.ins.2011.06.014

Google Scholar

[13] J.V. Kumar, D.M.V. Kumar, Generation bidding strategy in a pool based electricity market using Shuffled Frog Leaping Algorithm, Appl. Soft Comput. 21 (2014) 407-414.

DOI: 10.1016/j.asoc.2014.03.027

Google Scholar

[14] A.S. Bhagade, P.V. Puranik, Artificial Bee Colony (ABC) Algorithm for Vehicle Routing Optimization Problem, Int. J. Soft Comput. Eng. 2 (2012) 329-333.

Google Scholar

[15] S. Das, P.N. Suganthan, Differential Evolution: A Survey of the State-of-the-Art, IEEE Tran. on Evo. Com. 15 (2011) 4-31.

Google Scholar

[16] M. Iwan, R. Akmeliawatib, T. Faisala, H.M. Assadi, Performance Comparison of Differential Evolution and Particle Swarm Optimization In Constrained Optimization, Proc. Eng. 41 (2012) 1323–1328.

DOI: 10.1016/j.proeng.2012.07.317

Google Scholar

[17] M. Eslamian, S.H. Hosseinian, B. Vahidi, Bacterial foraging-based solution to the unitcommitment problem, IEEE Trans. Power Syst. 24(3) (2009) 1478–1488.

DOI: 10.1109/tpwrs.2009.2021216

Google Scholar

[18] H. Elbehairy, E. Elbeltagi, T. Hegazy, Comparison of two evolutionary algorithms for optimization of bridge deck repairs, Comput. Aided Civ. Infrastruct. Eng. 21 (2006) 561–572.

DOI: 10.1111/j.1467-8667.2006.00458.x

Google Scholar

[19] A.R. Vahed, A.H. Mirzaei, Solving a bi-criteria permutation flow-shop problem using shuffled frog-leaping algorithm , Soft Computing. Springer-Verlag, New York, (2007) 435-452.

DOI: 10.1007/s00500-007-0210-y

Google Scholar

[20] Z. Khan, L.B. Prasad, T. Singhl, Machine Condition Optimisation by Genetic Algorithms and Simulated, Comput. Ops Res. 24 (1997) 647-657.

Google Scholar

[21] B. Amiri, M. Fathian, A. Maroosi, Application of shuffled frog-leaping algorithm on clustering, Int. J. Ad. Manuf. Tech. 45 (2009) 199-209.

DOI: 10.1007/s00170-009-1958-2

Google Scholar

[22] N. Chai-ead, P. Aungkulanon, P. Luangpaiboon, Bees and firefly algorithms for noisy non-linear optimisation problems. Prof. Int. Multiconference of Engineers and Computer Scientists 2011-2 (2011) 1449–1454.

DOI: 10.1142/9789814390019_0005

Google Scholar

[23] P. Aungkulanon, N. Chai-ead, P. Luangpaiboon, Simulated manufacturing process improvement via particle swarm optimisation and firefly algorithms, Prof. Int. Multiconference of Engineers and Computer Scientists, 2011-2 (2011) 1123–1128.

DOI: 10.1142/9789814390019_0017

Google Scholar