[1]
Cardenas, J.A., et al., A literature survey on Smart Grid distribution: an analytical approach. Journal of Cleaner Production, 2014. 65: pp.202-216.
DOI: 10.1016/j.jclepro.2013.09.019
Google Scholar
[2]
Wu, Y. -n., J. Chen, and L. -r. Liu, Construction of China's smart grid information system analysis. Renewable and Sustainable Energy Reviews, 2011. 15(9): pp.4236-4241.
DOI: 10.1016/j.rser.2011.07.129
Google Scholar
[3]
Beaudin, M. and H. Zareipour, Home energy management systems: A review of modelling and complexity. Renewable and Sustainable Energy Reviews, 2015. 45: pp.318-335.
DOI: 10.1016/j.rser.2015.01.046
Google Scholar
[4]
Benetti, G., et al., Electric load management approaches for peak load reduction: A systematic literature review and state of the art. Sustainable Cities and Society, 2016. 20: pp.124-141.
DOI: 10.1016/j.scs.2015.05.002
Google Scholar
[5]
Chrysopoulos, A., et al., Bottom-up modeling of small-scale energy consumers for effective Demand Response Applications. Engineering Applications of Artificial Intelligence, 2014. 35: pp.299-315.
DOI: 10.1016/j.engappai.2014.06.015
Google Scholar
[6]
Gelazanskas, L. and K.A.A. Gamage, Demand side management in smart grid: A review and proposals for future direction. Sustainable Cities and Society, 2014. 11: pp.22-30.
DOI: 10.1016/j.scs.2013.11.001
Google Scholar
[7]
Munkhammar, J., J. Rydén, and J. Widén, Characterizing probability density distributions for household electricity load profiles from high-resolution electricity use data. Applied Energy, 2014. 135: pp.382-390.
DOI: 10.1016/j.apenergy.2014.08.093
Google Scholar
[8]
Grandjean, A., J. Adnot, and G. Binet, A review and an analysis of the residential electric load curve models. Renewable and Sustainable Energy Reviews, 2012. 16(9): pp.6539-6565.
DOI: 10.1016/j.rser.2012.08.013
Google Scholar
[9]
López, M.A., et al., Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support. International Journal of Electrical Power & Energy Systems, 2015. 64: pp.689-698.
DOI: 10.1016/j.ijepes.2014.07.065
Google Scholar
[10]
Macedo, M.N.Q., et al., Demand side management using artificial neural networks in a smart grid environment. Renewable and Sustainable Energy Reviews, 2015. 41: pp.128-133.
DOI: 10.1016/j.rser.2014.08.035
Google Scholar
[11]
Javed, F., et al., Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting. Applied Energy, 2012. 96: pp.150-160.
DOI: 10.1016/j.apenergy.2012.02.027
Google Scholar
[12]
Macedo, M.N.Q., et al., Typification of load curves for DSM in Brazil for a smart grid environment. International Journal of Electrical Power & Energy Systems, 2015. 67: pp.216-221.
DOI: 10.1016/j.ijepes.2014.11.029
Google Scholar
[13]
Larsen, G.K.H., N.D. van Foreest, and J.M.A. Scherpen, Power supply–demand balance in a Smart Grid: An information sharing model for a market mechanism. Applied Mathematical Modelling, 2014. 38(13): pp.3350-3360.
DOI: 10.1016/j.apm.2013.11.042
Google Scholar
[14]
Garulli, A., S. Paoletti, and A. Vicino, Models and Techniques for Electric Load Forecasting in the Presence of Demand Response. Control Systems Technology, IEEE Transactions on, 2015. 23(3): pp.1087-1097.
DOI: 10.1109/tcst.2014.2361807
Google Scholar
[15]
Dandan, L. and C. Qijun. Prediction of building lighting energy consumption based on support vector regression. in Control Conference (ASCC), 2013 9th Asian. (2013).
DOI: 10.1109/ascc.2013.6606376
Google Scholar
[16]
Abu Bakar, N.N., et al., Energy efficiency index as an indicator for measuring building energy performance: A review. Renewable and Sustainable Energy Reviews, 2015. 44: pp.1-11.
DOI: 10.1016/j.rser.2014.12.018
Google Scholar
[17]
El-Baz, W. and P. Tzscheutschler, Short-term smart learning electrical load prediction algorithm for home energy management systems. Applied Energy, 2015. 147: pp.10-19.
DOI: 10.1016/j.apenergy.2015.01.122
Google Scholar
[18]
McLoughlin, F., A. Duffy, and M. Conlon, Evaluation of time series techniques to characterise domestic electricity demand. Energy, 2013. 50: pp.120-130.
DOI: 10.1016/j.energy.2012.11.048
Google Scholar
[19]
Munkhammar, J., J. Widén, and J. Rydén, On a probability distribution model combining household power consumption, electric vehicle home-charging and photovoltaic power production. Applied Energy, 2015. 142: pp.135-143.
DOI: 10.1016/j.apenergy.2014.12.031
Google Scholar
[20]
Bello, A., et al., Probabilistic forecasting of hourly electricity prices in the medium-term using spatial interpolation techniques. International Journal of Forecasting, (2015).
DOI: 10.1016/j.ijforecast.2015.06.002
Google Scholar
[21]
Wu, C., et al., Probabilistic load flow analysis of photovoltaic generation system with plug-in electric vehicles. International Journal of Electrical Power & Energy Systems, 2015. 64: pp.1221-1228.
DOI: 10.1016/j.ijepes.2014.09.014
Google Scholar
[22]
Abdullah, M.A., A.P. Agalgaonkar, and K.M. Muttaqi, Probabilistic load flow incorporating correlation between time-varying electricity demand and renewable power generation. Renewable Energy, 2013. 55: pp.532-543.
DOI: 10.1016/j.renene.2013.01.010
Google Scholar