Study of Effects of Weathering Factors on Internal Structure of Rocks by Laser Ultrasonic Spectroscopy

Article Preview

Abstract:

The paper addresses the use of laser ultrasonic structuroscopy to study how weathering affects the internal structure of rocks used for facing buildings. For 1,250 hours rock samples were subjected to 150 cycles of freezing (at-20°C) and thawing in water (at +20°C) to determine their frost resistance. Also, moistened every 30 minutes, rock samples were exposed to thermal and ultraviolet radiation for 480 hours to determine their weather resistance. The frequency-dependent phase velocity and attenuation coefficient of longitudinal ultrasonic pulses in the samples were measured. It is found that the rock samples are most seriously damaged when exposed to sharp changes in temperature. As a result of freeze-thaw processes, the velocity of elastic waves decreases by 10% on average, and the attenuation coefficient increases by a factor of 1.5 in the range of 300kHz-500kHz and more than 3 times in the range of 1.0MHz-1.5MHz. The coefficient of the relative power of “structural” noise (K parameter) is introduced to characterize the degree of degradation of rock samples. The parameter K is defined as the ratio of the power of noise component in the spectrum of scattered waves to the power of reference signal. It is shown that the parameter K increases almost by a factor of 10 as a result of various weathering processes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-58

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Birkeland, Peter W. Soils and Geomorphology, 3rd ed. New York: Oxford University Press, (1999).

Google Scholar

[2] Lutgens, Frederick K. et al. Essentials of Geology, 8th ed. Englewood Cliffs, NJ: Prentice Hall, (2002).

Google Scholar

[3] Tarbuck, Edward J., and Frederick K. Lutgens. Earth: An Introduction to Physical Geology. Englewood Cliffs, NJ: Prentice Hall, (2002).

Google Scholar

[4] Zambell, C.B.; Adams, J.M.; Gorring, M.L.; Schwartzman, D.W. (2012).

Google Scholar

[5] Olivier Haillant, Polymer weathering: a mix of empiricism and science, Material Testing Product and Technology News, 2006, 36 (76), 3-12.

Google Scholar

[6] Khalili A.D., Arns C.H., Arns, J. -Y., Hussain F., Cinar Y., Pinczewski W.V., Latham S., Funk J. Permeability upscaling for carbonates from the pore-scale using multi-scale X-ray-CT images. Society of Petroleum Engineers. SPE/EAGE European Unconventional Resources Conference and Exhibition 2012, p.606.

DOI: 10.2118/152640-ms

Google Scholar

[7] Tippkötter R., Eickhorst T., Taubner H., Gredner B., Rademaker G. Detection of soil water in macropores of undisturbed soil using microfocus X-ray tube computerized tomography (µct).

DOI: 10.1016/j.still.2009.05.001

Google Scholar

[8] Soil and Tillage Research. 2009, vol. 105, iss 1, p.12–20. 5. Desrues J., Viggiani G., Bésuelle P. Advances in X-ray Tomography for Geomaterials. John Wiley & Sons, 2010, p.80–87.

DOI: 10.1002/9780470612187

Google Scholar

[9] T. W. Darling, J. A. TenCate, D. W. Brown, B. Clausen, and S. C. Vogel, Neutron diffraction study of the contribution of grain contacts to nonlinear stress-strain behavior, Geophys. Res. Lett. 31(16), L16604(2004).

DOI: 10.1029/2004gl020463

Google Scholar

[10] C. M. Sayers and M. Kachanov, Microcrack-induced elastic wave anisotropy of brittle rocks, J. Geophys. Res.: Solid Earth 100(B3), 4149–4156, (1995).

DOI: 10.1029/94jb03134

Google Scholar

[11] Y. Gueguen and A. Schubnel, Elastic wave velocities and permeability of cracked rocks, Tectonophysics 370(1–4), 163–176 (2003).

DOI: 10.1016/s0040-1951(03)00184-7

Google Scholar

[12] J. Fortin, Y. Gueguen, and A. Schubnel, Effects of pore collapse and grain crushing on ultrasonic velocities and V-p/V-s, J. Geophys. Res.: Solid Earth 112(B8), B08207 (2007).

DOI: 10.1029/2005jb004005

Google Scholar

[13] Breazeale, M., and Thompson, D. (1963). Finite amplitude ultrasonic waves in aluminum, Appl. Phys. Lett. 3, 77.

Google Scholar

[14] Cantrell, J., and Yost, W. (2001). Nonlinear ultrasonic characterization of fatigue microstructures, Int. J. Fatigue 23, 487-490.

DOI: 10.1016/s0142-1123(01)00162-1

Google Scholar

[15] Chen, J., Jayapalan, A. R., Kim, J. Y., Kurtis, K. E., and Jacobs, L. J. (2010). Rapid evaluation of alkali-silica reactivity of aggregates using a nonlinear resonance spectroscopy technique, Cem. Concr. Res. 40, 914-923.

DOI: 10.1016/j.cemconres.2010.01.003

Google Scholar

[16] Courtney, C., Drinkwater, B., Neild, S., and Wilcox, P. (2008). Factors affecting the ultrasonic intermodulation crack detection technique using bispectral analysis, NDT & E Int. 41, 223-234.

DOI: 10.1016/j.ndteint.2007.09.004

Google Scholar

[17] Donskoy, D., Sutin, A., and Ekimov, A. (2001). Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing, NDT & E Int. 34, 231-238.

DOI: 10.1016/s0963-8695(00)00063-3

Google Scholar

[18] Nagy, P. B. (1998). Fatigue damage assessment by nonlinear ultrasonic materials characterization, Ultrasonics 36, 375-381.

DOI: 10.1016/s0041-624x(97)00040-1

Google Scholar

[19] Renaud, G., Calle, S., and Defontaine, M. (2009). Remote dynamic acous- toelastic testing: Elastic and dissipative acoustic nonlinearities measured under hydrostatic tension and compression, Appl. Phys. Lett. 94, 011905.

DOI: 10.1063/1.3064137

Google Scholar

[20] Van den Abeele, K. E. A., Carmeliet, J., Ten Cate, J. A., and Johnson, P. A. (2000).

Google Scholar

[21] Nazarov, V. E., Kolpakov, A. B., and Radostin, A. V. (2009). Amplitude dependent internal friction and generation of harmonics in granite resonator, Acoust. Phys. 55, 100-107.

DOI: 10.1134/s1063771009010114

Google Scholar

[22] Zaitsev, V. Y., Matveev, L., and Matveyev, A. (2011). Elastic-wave modulation approach to crack detection: Comparison of conventional modulation and higher-order interactions, NDT & E Int. 44, 21-31.

DOI: 10.1016/j.ndteint.2010.09.002

Google Scholar

[23] S. Haupert, G. Renaud, J. Riviere, and M. Talmant High-accuracy acoustic detection of nonclassical component of material nonlinearity. J. Acoust. Soc. Am., Vol. 130, No. 5, 2011, P. 2656-2661.

DOI: 10.1121/1.3641405

Google Scholar

[24] M. Scalerandi, A.S. Gliozzi, S. Haupert, G. Renaud, F. Boubenider, Investigation of the validity of Dynamic AcoustoElastic Testing for measuring nonlinear elasticity Journal of Applied Physics . 09/2015; 118(12).

DOI: 10.1063/1.4931917

Google Scholar

[25] V. É. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka, Moscow, 1991) [in Russian].

Google Scholar

[26] Karabutov A., Savateeva E., Podymova N., Oraevsky A. Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer /J. Appl. Phys. 2000 v. 87(4), p.2003-(2014).

DOI: 10.1063/1.372127

Google Scholar

[27] Podymova N.B., Karabutov A.A., Cherepetskaya E.B. Laser optoacoustic method for quantitative nondestructive evaluation of the subsurface damage depth in ground silicon wafers. Laser Physics, V. 24, № 8, P. 086003(1)-086003(5).

DOI: 10.1088/1054-660x/24/8/086003

Google Scholar

[28] A.A. Karabutov, V.A. Makarov, E.B. Cherepetskaya, and V.L. Shkuratnik Laser Ultrasonic Spectroscopy of Rocks, Moscow, Gornaya Kniga, 2008, 198 p. (in Russian).

Google Scholar