Mode-II Fatigue Crack Growth Model from Shear-Type Low Cycle Fatigue Properties

Article Preview

Abstract:

The inherent law between fatigue behaviors of shear-type representative volume element and mode-II fatigue crack growth is found in the range of cycle plastic zone near the crack tip. Prediction model for mode-II fatigue crack growth rate is then proposed by utilizing shear-type low cycle fatigue properties, plastic strain energy criterion, and effective cycle stress-strain field. Experimental data of two Aluminum alloys, 2024-T351 and 7075-T6, are used for the model verification. Good agreement between experimental and theoretical results is obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-21

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liu H.W. Shear fatigue crack growth: a literature survey. Fatigue & Fracture of Engineering Materials & Structures. 8(1985)295-313.

DOI: 10.1111/j.1460-2695.1985.tb00429.x

Google Scholar

[2] Hammouda M.M.I., El-Sehily B.M. A two-dimensional elastic–plastic finite element analysis of friction effects on sliding crack surfaces in full or partial contact. Fatigue & Fracture of Engineering Materials & Structures. 22(1999)101-110.

DOI: 10.1046/j.1460-2695.1999.00143.x

Google Scholar

[3] Tanaka K. Fatigue crack propagation from a crack inclined to the cyclic tensile axis. Engineering Fracture Mechanics. 6(1974)493-507.

DOI: 10.1016/0013-7944(74)90007-1

Google Scholar

[4] Otsuka A., Mori K., Ohshima T., Tsuyama S. Mode II fatigue crack growth in aluminium alloys and mild steel. In ICF5, Cannes (France) (1981).

Google Scholar

[5] Roberts R., Kibler J.J. Mode II fatigue crack propagation. Journal of Fluids Engineering. 93(1971)671-680.

DOI: 10.1115/1.3425325

Google Scholar

[6] Miller E.E., Sutton M.A., Deng X., et al. Experimental and Predicted Crack Paths for Al-2024-T351 Under Mixed-Mode I/II Fatigue. Fracture, Fatigue, Failure, and Damage Evolution, 5(2015)11-20.

DOI: 10.1007/978-3-319-06977-7_2

Google Scholar

[7] Matsunaga H., Makizaki M., Socie D.F., Yanase K., Endo M. Mode I Fatigue Crack Growth with Occasional Mode II Loading in 7075 Aluminum Alloy. ICMFF10, (2015).

DOI: 10.1016/j.engfracmech.2014.04.015

Google Scholar

[8] Fatemi A., Gates N., Socie D.F., Phan N. Fatigue crack growth behaviour of tubular aluminium specimens with a circular hole under axial and torsion loadings. Engineering Fracture Mechanics. 123(2014)137-147.

DOI: 10.1016/j.engfracmech.2014.04.010

Google Scholar

[9] Otsuka A., Sugawara H., Shomura M. A test method for mode II fatigue crack growth relating to a model for rolling contact fatigue. Fatigue & Fracture of Engineering Materials & Structures. 19(1996)1265-1275.

DOI: 10.1111/j.1460-2695.1996.tb00949.x

Google Scholar

[10] Richard H.A. A new compact shear specimen. International Journal of Fracture. 17(1981)R105-R107.

DOI: 10.1007/bf00033347

Google Scholar

[11] Buzzard R.J., Gross B., Srawley J.E. Mode II fatigue crack growth specimen development. ASTM STP. 905(1986)329-346.

DOI: 10.1520/stp17405s

Google Scholar

[12] Matsunaga H., Makizaki M., Socie D.F., Yanase K., Endo M. Acceleration of fatigue crack growth due to occasional mode II loading in 7075 aluminum alloy. Engineering Fracture Mechanics. 123(2014)26-36.

DOI: 10.1016/j.engfracmech.2014.04.015

Google Scholar

[13] Nayeb-Hashemi H., Taslim M.E. Effects of the transient Mode II on the steady state crack growth in Mode I. Engineering Fracture Mechanics. 26(1987)789-807.

DOI: 10.1016/0013-7944(87)90029-4

Google Scholar

[14] Murakami Y., Takahashi K. Torsional fatigue of a medium carbon steel containing an initial small surface crack introduced by tension–compression fatigue: crack branching, non-propagation and fatigue limit. Fatigue & Fracture of Engineering Materials & Structures. 21(1998).

DOI: 10.1046/j.1460-2695.1998.00128.x

Google Scholar

[15] Otsuka A., Tohgo K., Matsuyama H. Fatigue crack initiation and growth under mixed mode loading in aluminum alloys 2017-T3 and 7075-T6. Engineering Fracture Mechanics. 28(1987)721-732.

DOI: 10.1016/0013-7944(87)90065-8

Google Scholar

[16] Qian J., Fatemi A. Mixed mode fatigue crack growth: A literature survey. Engineering Fracture Mechanics. 55(1996)969-990.

DOI: 10.1016/s0013-7944(96)00071-9

Google Scholar

[17] Pandey K., Chand S. An energy based fatigue crack growth model. International Journal of Fatigue. 25(2003)771-778.

DOI: 10.1016/s0142-1123(03)00049-5

Google Scholar

[18] Kujawski D., Ellyin F. A fatigue crack propagation model. Engineering Fracture Mechanics. 20(1984)695-704.

DOI: 10.1016/0013-7944(84)90079-1

Google Scholar

[19] Ellyin F. Crack growth rate under cyclic loading and effect of different singularity fields. Engineering Fracture Mechanics. 25(1986)463-473.

DOI: 10.1016/0013-7944(86)90260-2

Google Scholar

[20] Glinka G. A cumulative model of fatigue crack growth. International journal of fatigue. 4(1982)59-67.

DOI: 10.1016/0142-1123(82)90061-5

Google Scholar

[21] Shi K.K., Cai L.X., Chen L., Wu S.C., Bao C. Prediction of fatigue crack growth based on low cycle fatigue properties. International Journal of Fatigue. 61(2014)220-225.

DOI: 10.1016/j.ijfatigue.2013.11.007

Google Scholar

[22] Kujawski D., Ellyin F. A fatigue crack growth model with load ratio effects. Engineering Fracture Mechanics. 28(1987)367-378.

DOI: 10.1016/0013-7944(87)90182-2

Google Scholar

[23] Hutchinson J. Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids. 16(1968)13-31.

DOI: 10.1016/0022-5096(68)90014-8

Google Scholar

[24] Rice J., Rosengren G. Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids. 16(1968)1-12.

DOI: 10.1016/0022-5096(68)90013-6

Google Scholar

[25] Symington M., Shih C.F., Ortiz M. Tables of plane strain mixed-mode plastic crack tip fields. Brown University Report, Providence, RI. (1988).

Google Scholar

[26] Shih C.F. Elastic-plastic analysis of combined mode crack problems: Harvard University; (1973).

Google Scholar

[27] Ramberg W., Osgood W.R. Description of stress-strain curves by three parameters: National Advisory Committee for Aeronautics; (1943).

Google Scholar

[28] Shlyannikov V., Tumanov A. Characterization of crack tip stress fields in test specimens using mode mixity parameters. International Journal of Fracture. 185(2014)49-76.

DOI: 10.1007/s10704-013-9898-0

Google Scholar

[29] Shlyannikov V.N., Tumanov A.V., Zakharov A.P. The mixed mode crack growth rate in cruciform specimens subject to biaxial loading. Theoretical and Applied Fracture Mechanics. 73(2014)68-81.

DOI: 10.1016/j.tafmec.2014.06.016

Google Scholar

[30] Ricel J. The mechanics of crack tip deformation and extension by fatigue. Fatigue Crack Propagation, ASTM, ASTM STP. 415(1966).

DOI: 10.1520/stp47234s

Google Scholar

[31] Hua G., Brown M.W., Miller K.J. Mixed-mode fatigue thresholds. Fatigue & Fracture of Engineering Materials & Structures. 5(1982)1-17.

DOI: 10.1111/j.1460-2695.1982.tb01220.x

Google Scholar

[32] Li J., Zhang Z., Sun Q., Li C.W., Li R.S. A simple relationship between axial and torsional cyclic parameters. Journal of materials engineering and performance. 20( 2011)1289-1293.

DOI: 10.1007/s11665-010-9748-4

Google Scholar

[33] Shi K.K., Cai L.X., Bao C. Crack Growth Rate Model under Constant Cyclic Loading and Effect of Different Singularity Fields. Procedia Materials Science. 3(2014)1566-1572.

DOI: 10.1016/j.mspro.2014.06.253

Google Scholar

[34] Shi K.K., Cai L.X., Bao C., Wu S.C., Chen L. Structural fatigue crack growth on a representative volume element under cyclic strain behavior. International Journal of Fatigue. 74(2015)1-6.

DOI: 10.1016/j.ijfatigue.2014.12.009

Google Scholar

[35] Yu X., Abel A. Crack surface interference under cyclic mode I and steady mode II loading: Part I: Experimental study. Engineering Fracture Mechanics. 66(2000)503-518.

DOI: 10.1016/s0013-7944(00)00038-2

Google Scholar

[36] Tong J., Yates R., Brown M.W. A model for sliding mode crack closure part I: Theory for pure mode II loading. Engineering Fracture Mechanics. 52(1995)599-611.

DOI: 10.1016/0013-7944(95)00044-v

Google Scholar

[37] Matsunaga H., Makizaki M., Yanase K. Finite element modeling of plasticity-induced crack closure due to occasional mode II loading on mode I fatigue crack growth. Engineering Fracture Mechanics. 111( 2013)38-49.

DOI: 10.1016/j.engfracmech.2013.09.001

Google Scholar