Manufacturing Issues and the Resulting Complexity in Modeling of Additively Manufactured Metallic Microlattices

Article Preview

Abstract:

Although metallic microlattice material is a sought after research topic currently, it suffers from manufacturing defects such as micro-voids formation due to missed fusion, stemmed from the stacking-layered-fused nature of the metal powder in Powder Bed Fusion (PBF) process. These defects result in weakening of the finished part and reduced mechanical performance under service load, possibly leading to low fatigue strength, and raise serious question about 3D printed structural integrity. Numerical simulation of the built parts also becomes difficult due to irregular physical properties including geometry and anisotropic nature of mechanical properties. This paper provides an overview on the manufacturing issues and the subsequent hurdle faced in numerical simulation of metallic microlattices. While the issues in manufacturing are related to emerging additive manufacturing techniques and out of control of end users, it has been suggested that the limitations in numerical simulation can be overcome by employing advanced approaches, in both physical properties measurement and modeling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

394-398

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.G. Rashed, M. Ashraf, R.A.W. Mines, P.J. Hazell, Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications, Mater. Des. 95 (2016) 518–533. doi: 10. 1016/j. matdes. 2016. 01. 146.

DOI: 10.1016/j.matdes.2016.01.146

Google Scholar

[2] R.A.W. Mines, On the characterisation of foam and micro-lattice materials used in sandwich construction, Strain. 44 (2008) 71–83. doi: 10. 1111/j. 1475-1305. 2008. 00399. x.

DOI: 10.1111/j.1475-1305.2008.00399.x

Google Scholar

[3] O. Rehme, Cellular design for laser freeform fabrication, Cuvillier, (2010).

Google Scholar

[4] S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, A.T. C lare, Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing, Mater. Des. (2016). doi: 10. 1016/j. matdes. 2016. 01. 099.

DOI: 10.1016/j.matdes.2016.01.099

Google Scholar

[5] Advances in production technology, Springer International Publishing, 2015. http: /link. springer. com/chapter/10. 1007/978-3-319-12304-2.

Google Scholar

[6] D.D. Arola, M.L. McCain, Abrasive waterjet peening: A new method of surface preparation for metal orthopedic implants, J. Biomed. Mater. Res. 53 (2000) 536–546. doi: 10. 1002/1097-4636(200009)53: 5<536: AID-JBM13>3. 0. CO; 2-V.

DOI: 10.1002/1097-4636(200009)53:5<536::aid-jbm13>3.0.co;2-v

Google Scholar

[7] R. Gümrük, R.A.W. Mines, Compressive behaviour of stainless steel micro-lattice structures, Int. J. Mech. Sci. 68 (2013) 125–139. doi: 10. 1016/j. ijmecsci. 2013. 01. 006.

DOI: 10.1016/j.ijmecsci.2013.01.006

Google Scholar

[8] C.C. Seepersad, J.K. Allen, D.L. McDowell, F. Mistree, Robust design of cellular materials with topological and dimensional imperfections, J. Mech. Des. 128 (2006) 1285–1297. doi: 10. 1115/1. 2338575.

DOI: 10.1115/1.2338575

Google Scholar

[9] C. Qiu, S. Yue, N.J.E. Adkins, M. Ward, H. Hassanin, P.D. Lee, et al., Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting, Mater. Sci. Eng. A. 628 (2015).

DOI: 10.1016/j.msea.2015.04.074

Google Scholar

[10] P. Mercelis, J. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J. 12 (2006) 254–265. doi: 10. 1108/13552540610707013.

DOI: 10.1108/13552540610707013

Google Scholar

[11] O. Cansizoglu, O.L.A. Harrysson, H.A. West, D.R. Cormier, T. Mahale, Applications of structural optimization in direct metal fabrication, Rapid Prototyp. J. 14 (2008) 114–122. doi: 10. 1108/13552540810862082.

DOI: 10.1108/13552540810862082

Google Scholar

[12] P. Li, Constitutive and failure behaviour in selective laser melted stainless steel for microlattice structures, Mater. Sci. Eng. A. 622 (2015) 114–120. doi: 10. 1016/j. msea. 2014. 11. 028.

DOI: 10.1016/j.msea.2014.11.028

Google Scholar

[13] G. Pyka, A. Burakowski, G. Kerckhofs, M. Moesen, S. Van Bael, J. Schrooten, et al., Surface modification of Ti6Al4V open porous structures produced by additive manufacturing, Adv. Eng. Mater. 14 (2012) 363–370. doi: 10. 1002/adem. 201100344.

DOI: 10.1002/adem.201100344

Google Scholar

[14] Standard specification for additive manufacturing titanium-6 aluminum-4 vanadium with powder bed fusion, ASTM International, West Conshohocken, PA, 2014. www. astm. org.

DOI: 10.1520/f2924-12

Google Scholar

[15] M.G. Rashed, M. Ashraf, P.J. Hazell, Evaluation of rate-dependent plasticity models in numerical simulation of metallic light-weight microlattice materials, in: Proc. Eighth Int. Conf. Adv. STEEL Struct., University of Lisbon, Lisbon, Portugal, (2015).

Google Scholar

[16] M. Smith, The compressive response of novel lattice structures subjected to static and dynamic loading, PhD thesis, University of Liverpool, (2012).

Google Scholar

[17] S. Lee, F. Barthelat, J.W. Hutchinson, H.D. Espinosa, Dynamic failure of metallic pyramidal truss core materials – Experiments and modeling, Int. J. Plast. 22 (2006) 2118–2145. doi: 10. 1016/j. ijplas. 2006. 02. 006.

DOI: 10.1016/j.ijplas.2006.02.006

Google Scholar

[18] A. Ramasubramaniam, E.A. Carter, Coupled quantum–atomistic and quantum–continuum mechanics methods in materials research, MRS Bull. 32 (2007) 913–918. doi: 10. 1557/mrs2007. 188.

DOI: 10.1557/mrs2007.188

Google Scholar

[19] L. Valdevit, S.W. Godfrey, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, Compressive strength of hollow microlattices: Experimental characterization, modeling, and optimal design, J. Mater. Res. 28 (2013) 2461–2473. doi: 10. 1557/jmr. 2013. 160.

DOI: 10.1557/jmr.2013.160

Google Scholar