Interferometric Biosensor Using TiO2 Nanotube Arrays

Article Preview

Abstract:

TiO2 nanotube arrays fabricated by anodic oxidation had a large surface area and high refraction index. These microstructural properties are very attractive as interferometric biosensing materials. Label free interferometric biosensor usually used nanoporous Si materials. TiO2 nanotube arrays had more stability for wide pH range solutions. The interferometric spectrum from nanoporous layer was treated by Fast Fourier Transform and optical thickness was measured. The optical thickness was changed with the materials in nanoporous layer. To fabricate the TiO2 nanotube arrays, anodizing time, voltage and electrolyte were optimized. The diameter and length of TiO2 nanotube arrays were ~100 nm and ~4 µm, respectively. To observe the loading and elution of the chlorhexidine in TiO2 nanotube in real time, the optical thickness was measured with flow cell system. In 10 wt% chlorhexidine, optical thickness change of ~125 nm was observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-217

Citation:

Online since:

April 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Brecht, G. Gauglitz, J. Polster, Interferometric immunoassay in a FIA-system: a sensitive and rapid approach in label-free immunosensing, Biosens. Bioelectron. 8(7) (1993) 387-392.

DOI: 10.1016/0956-5663(93)80078-4

Google Scholar

[2] S. Chan, P. Fauchet, Y. Li, L. Rothberg, B. Miller, Porous silicon microcavities for biosensing applications, Phys. Status Solidi A, 182(1) (2000) 541-546.

DOI: 10.1002/1521-396x(200011)182:1<541::aid-pssa541>3.0.co;2-#

Google Scholar

[3] J. Lu, C. M. Strohsahl, B. L. Miller, L. J. Rothberg, Reflective interferometric detection of label-free oligonucleotides, Anal. Chem. 76(15) (2004) 4416-4420.

DOI: 10.1021/ac0499165

Google Scholar

[4] V. Lin, K. Motesharei, K. Dancil, M. Sailor, M. Ghadiri, A porous silicon-based optical interferometric biosensor, Science 278(31) (1997) 840-843.

DOI: 10.1126/science.278.5339.840

Google Scholar

[5] R. Beranek, H. Hildebrand, P. Schmuki, Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes, Electrochem. Solid-State Lett. 6(3) (2003) B12-B14.

DOI: 10.1149/1.1545192

Google Scholar

[6] J. M. Macak, H. Tsuchiya, P. Schmuki, High‐Aspect‐Ratio TiO2 Nanotubes by Anodization of Titanium, Angew. Chem. Int. Ed. 44(14) (2005) 2100-2102.

DOI: 10.1002/anie.200462459

Google Scholar

[7] K. S. Mun, S. D. Alvarez, W. Y. Choi, M. J. Sailor, A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays, Acs Nano, 4(4) (2010) 2070-(2076).

DOI: 10.1021/nn901312f

Google Scholar

[8] D. J. Yang, H. G. Kim, S. J. Cho, W. Y. Choi, Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method, Mater. Lett. 62(4) (2008a) 775-779.

DOI: 10.1016/j.matlet.2007.06.058

Google Scholar

[9] D. J. Yang, H. G. Kim, S. J. Cho, W. Y. Choi, Vertically oriented titania nanotubes prepared by anodic oxidation on Si substrates, IEEE Trans. Nanotechnol. 7(2) (2008b) 131-134.

DOI: 10.1109/tnano.2007.909439

Google Scholar

[10] M. P. Schwartz, S. D. Alvarez, M. J. Sailor, Porous SiO2 interferometric biosensor for quantitative determination of protein interactions: binding of protein A to immunoglobulins derived from different species, Anal. Chem. 79(1) (2007) 327-334.

DOI: 10.1021/ac061476p

Google Scholar

[11] L. Taveira, J. Macak, H. Tsuchiya, L. Dick, P. Schmuki, Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F∕(NH4)2SO4 Electrolytes, J. Electrochem. Soc. 152(10) (2005) B405-B410.

DOI: 10.1149/1.2008980

Google Scholar

[12] T. Güthner et al., 7th ed., Guanidine and Derivatives, Ullman's Encyclopedia of Industrial Chemistry, Wiley, 2007 p.13.

Google Scholar