Study on Energy Efficiency and Flexibility in Machinery and Production

Article Preview

Abstract:

Increasing energy costs, the change from conventional to renewable energy sources and the growing awareness of green production, especially in Germany, are crucial challenges for society and for industry. Renewable energy sources, especially solar and wind power, lead to a limited and volatile energy supply. Therefore, energy is no longer a resource which is available and ready on demand in the future. This change in energy supply hugely influences the production and industrial processes and is leading to alternative forms of production. There are high potentials in terms of energy efficiency and energy flexibility to master the described challenges. This paper presents an overview of the current state of the art in energy efficient and, especially, energy flexible production. The focus is on new aspects caused by the changes in production processes. Furthermore, research action fields concerning the energy flexibility of production machines are shown and explained through a practical example.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-114

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy and Buildings 40 (3), (2008), p.394–398.

DOI: 10.1016/j.enbuild.2007.03.007

Google Scholar

[2] REN21 Renewable Energy Policy Network for the 21st Century, REN21 Renewables 2011 Global Status Report.

Google Scholar

[3] J.M. Allwood, T.G. Gutowski, A.C. Serrenho, A.C.H. Skelton, E. Worrell, Industry 1. 61803: the transition to an industry with reduced material demand fit for a low carbon future, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 375 (2095).

DOI: 10.1098/rsta.2016.0361

Google Scholar

[4] O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: Current status, future prospects and their enabling technology, Renewable and Sustainable Energy Reviews 39, (2014), p.748–764.

DOI: 10.1016/j.rser.2014.07.113

Google Scholar

[5] S.R. Bull, Renewable energy today and tomorrow, Proc. IEEE 89 (8), (2001), p.1216–1226.

DOI: 10.1109/5.940290

Google Scholar

[6] bdew, Energie-Info - Industriestrompreise: Ausnahmeregelungen bei Energiepreisbestandteilen (Aktualisierte Fassung), (2015).

Google Scholar

[7] BMWI, Energiedaten: Gesamtausgabe, (2017).

Google Scholar

[8] Bundesregierung | Energie transportieren | Bundesregierung beschließt Ausstieg aus der Kernkraft bis 2022, available at https: /www. bundesregierung. de/Content/DE/StatischeSeiten/Breg/Energiekonzept/05-kernenergie. html (accessed on March 28, 2017).

Google Scholar

[9] w. Bundesumweltminsterium (BMU), Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global.

Google Scholar

[10] Umweltbundesamt, Stromverbrauch, available at http: /www. umweltbundesamt. de/daten/energiebereitstellung-verbrauch/stromverbrauch (accessed on April 4, 2017).

Google Scholar

[11] T. Schabbach, V. Wesselak, Energie: Die Zukunft wird erneuerbar, Springer Vieweg, Berlin, (2012).

Google Scholar

[12] ÖKOREC in Auftrag der vbw, Energieeffizenz in der Industrie Juli, (2012).

Google Scholar

[13] BDI – Bundesverband der Deutschen Industrie, Energiewende auf Kurs bringen: Handlungsempfehlungen an die Politik für die erfolgreiche Umsetzung der Energiewende March, (2013).

Google Scholar

[14] Mautz, Rüdiger/ Byzio, Andreas/ Rosenbaum, Wolf, Auf dem Weg zur Energiewende. Die Entwicklung der Stromproduktion aus erneuerbaren Energien in Deutschland.

DOI: 10.17875/gup2008-295

Google Scholar

[15] E. Unterberger, A. Wolf, G. Reinhart, A Comparison of Indicators for Self-Sufficient Energy Systems, AMM 856, (2016), p.11–19.

DOI: 10.4028/www.scientific.net/amm.856.11

Google Scholar

[16] Sören Lorenz, Matthias Putz, Andreas Schlegel, Energieeffizienz 2. 0, ZWF (09), (2012).

Google Scholar

[17] M. Graßl, Bewertung der Energieflexibilität in der Produktion. Zugl.: München, Techn. Univ., Diss., 2015, Utz, München, (2015).

Google Scholar

[18] Wofgang Irrek, Stefan Thomas, Defining energie efficiency, available at https: /wupperinst. org/uploads/tx_wupperinst/energieeffizienz_definition. pdf (accessed on May 10, 2017).

Google Scholar

[19] Marilugo, in: M.F. Zäh (Ed. ), Enabling manufacturing competitiveness and economic sustainability: Proceedings of the 5th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2013), Munich, Germany, October 6th - 9th, 2013, Springer, Cham, (2014).

DOI: 10.1007/978-3-319-02054-9

Google Scholar

[20] J. Schlechtendahl, S. Braun, P. Schraml, E. Abele, U. Heisel, A. Verl, A. Lechler, Modellbasierte, energieoptimale Maschinensteuerung: ie Reduktion des Energieverbrauchs über mehrere Ebenen der Steuerungshierarchie – Teil 2 (06), (2015).

DOI: 10.37544/1436-4980-2015-06-92

Google Scholar

[21] Neugebauer et al., in: D.A. Dornfeld, B.S. Linke (Eds. ), Leveraging technology for a sustainable world: Proceedings of the 19th CIRP Conference on Life Cycle Engineering, University of California at Berkeley, Berkeley, USA, May 23 - 25, 2012 ; [LCE 2012], Springer, Berlin, (2012).

DOI: 10.1007/978-3-642-29069-5

Google Scholar

[22] Strock, in: H.A. ElMaraghy (Ed. ), Enabling Manufacturing Competitiveness and Economic Sustainability: Proceedings of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual production (CARV2011), Montreal, Canada, 2-5 October 2011, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, (2012).

DOI: 10.1007/978-3-642-23860-4

Google Scholar

[23] Abele, Kuhrke, Rothenbücher, Energieeffizienz: spanender Werkzeugmaschinen, Wissenschaftsmagazin der TU Darmstadt Frühjahr, (2011), pp.64-67.

Google Scholar

[24] Popp Zäh, Steuerung des Energiebedarfs von Werkzeugmaschinen: Beeinflussung der Leistungsaufnahme spanender Werkzeugmaschinen ohne Prozessauswirkungen, wt Werkstattstechnik online 104 (6), (2014), p.413–417.

DOI: 10.37544/1436-4980-2014-6-413

Google Scholar

[25] PROFIBUS & PROFINET International, PROFIenergy: Energiekosten senken, einfach und herstellerunabhängig, available at http: /www. profibus. com/nc/download/brochures-white-paper/downloads/profienergy/download/7711/. (accessed on April 11, 2017).

Google Scholar

[26] sercos international. e. v, sercosenergy - Google-Suche. Whitepaper, available at www. sercos. com/literature/pdf/sercos_energy_whitepaper_en. pdf (accessed on April 11, 2017).

Google Scholar

[27] McKinnstry et al., in: D.A. Dornfeld, B.S. Linke (Eds. ), Leveraging technology for a sustainable world: Proceedings of the 19th CIRP Conference on Life Cycle Engineering, University of California at Berkeley, Berkeley, USA, May 23 - 25, 2012 ; [LCE 2012], Springer, Berlin, (2012).

DOI: 10.1007/978-3-642-29069-5

Google Scholar

[28] Eberspächer et al., in: Dornfeld, Linke (Hg. ) 2012 – Leveraging technology for a sustainable, p.381–386.

Google Scholar

[29] C. Schultz, P. Sellmaier, G. Reinhart, An Approach for Energy-oriented Production Control Using Energy Flexibility, Procedia CIRP 29, (2015), p.197–202.

DOI: 10.1016/j.procir.2015.02.038

Google Scholar

[30] L. Cassettari, I. Bendato, M. Mosca, R. Mosca, Energy Resources Intelligent Management using on line real-time simulation: A decision support tool for sustainable manufacturing, Applied Energy 190, (2017), p.841–851.

DOI: 10.1016/j.apenergy.2017.01.009

Google Scholar

[31] J. Beier, S. Thiede, C. Herrmann, Increasing Energy Flexibility of Manufacturing Systems through Flexible Compressed Air Generation, Procedia CIRP 37, (2015), p.18–23.

DOI: 10.1016/j.procir.2015.08.063

Google Scholar

[32] J. Zou, Q. Chang, J. Arinez, G. Xiao, Data-driven modeling and real-time distributed control for energy efficient manufacturing systems, Energy 127, (2017), p.247–257.

DOI: 10.1016/j.energy.2017.03.123

Google Scholar

[33] A.S. Timm Kuhlmann, Gestaltung wandlungsfähiger Energiesysteme, ZWF (11), (2016).

Google Scholar

[34] H. Diebler, Energiemanagement in der Industrie, ZWF (10), (2016).

Google Scholar

[35] Uwe Dombrowski, Stefan Ernst, and Maren Evers, Employee Participation for Increasing Energy Efficiency in Factory Operations, in: M.F. Zäh (Ed. ), Enabling manufacturing competitiveness and economic sustainability: Proceedings of the 5th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2013), Munich, Germany, October 6th - 9th, 2013, Springer, Cham, (2014).

DOI: 10.1007/978-3-319-02054-9_47

Google Scholar

[36] Peter Simon, Martin Rösch, Yannik Zeiträg, Jan Klöber-Koch, Johannes Glasschröder, Stefan Braunreuther, Gunther Reinhart, Methode zur Bewertung von Energieflexibilitätsmaßnahmen, in: IEWT 2017, (2017).

Google Scholar

[37] Stefan Kirschbaum, Entwicklung eines Softwarepakets zur Simulation industrieller Produktionsprozesse unter energetischen Gesichtspunkten. Dissertation, Aachen, (2012).

Google Scholar

[38] Dieter Spath, Oliver Ganschar, Stefan Gerlach, Moritz Hämmerle, Tobias Krause, Sebastian Schhlund, Produktionsarbeit der Zukunft – Industrie 4. 0.

Google Scholar

[39] G. Schuh, C. Fuß (Eds. ), ProSense: Ergebnisbericht des BMBF-Verbundprojektes ; hochauflösende Produktionssteuerung auf Basis kybernetischer Unterstützungssysteme und intelligenter Sensorik, 1st ed., Apprimus Verl., Aachen, (2015).

Google Scholar

[40] S. Reinhardt, Bewertung der Ressourceneffizienz in der Fertigung. Zugl.: München, Techn. Univ., Diss., 2013, Utz, München, (2013).

Google Scholar