Virtual Process Data Linkage of Assembly Stations in High Variance Workshop Production

Article Preview

Abstract:

The advance of digitalization changes the requirements of processes in industrial production and assembly. For this reason, production and assembly must now be able to execute complex process steps. This is about quality and productivity expectations, as well as flexibility and reliability of production, lines and plants [1]. Today, data is generated by almost every system, machine and sensor, yet it is hardly used for process optimization. Manufacturing processes are usually organized as workshop production or chained production systems, in addition to standalone machines [2,3]. Most analytic projects focus on chained systems and serial production, unlike individual machines and specific workshop production. Depending on manufacturing IT, process data from serial production is stored in data bases, which are usually optimized for traceability. Standalone machines and machines within workshop production are scarcely connected to a common data base. The required process data is stored either on the module itself or inside a local data base [4]. The identification of dependencies between individual assembly processes, energy data and the quality of the finished product is necessary for an extended optimization. These optimizations can be process-specific, as well as environmental and resource related. Due to decentralized process data storages, an overall view of a dynamic order-oriented value chain is denied. Therefore, the potential of the machines is largely unused. Based on Data Mining, this advanced development can be counteracted by process monitoring and optimization. Therefore, this paper provides a solution for a virtual process data linkage of assembly stations. This enables the acquisition, processing, transformation and storage of unstructured raw data by special software and methods, which is also able to cope with chained production systems and standalone machines. For further analysis of interdependencies, a visualization is developed for advanced monitoring and optimization [5,6].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-68

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. H. Fritz, G. Schulze, Fertigungstechnik, 11 ed., Springer Verlag, Berlin-Heidelberg, (2015).

Google Scholar

[2] T. Jeske, J. von Garrel, J. Starke, Erfolgsfaktor Flexibilität - Ergebnisse einer deutschlandweiten Unternehmensbefragung. In: Industrial engineering Volume 64 (1), (2011), pp.20-23.

Google Scholar

[3] B. Kaluza, S. Behrens, Erfolgsfaktor Flexibilität - Strategien und Konzepte für wandlungsfähige Unternehmen, Schmidt, Berlin, (2005).

Google Scholar

[4] M. Fabrizius, Sensordatenanalyse am Beispiel der Werkstattfertigung, Press statement, URL: https: /www. mayato. com/wp-content/uploads/2015/12/WP-Sensordatenanalyse_am_Beispiel_der_Werkstattfertigung. pdf.

Google Scholar

[5] S. Few, Information Dashboard Design, O'Reilly, Sebastopol, (2006).

Google Scholar

[6] T. A. Runkler, Data Mining – Modelle und Algorithmen intelligenter Datensysteme, second ed., Springer Verlag, Wiesbaden, (2015).

DOI: 10.1007/978-3-8348-2171-3

Google Scholar

[7] T. Wochinger, M. Weskamp, Einsatz von Data Mining zur Optimierung des Produktionsmanagements, Fraunhofer IPA, Stuttgart, (2014).

Google Scholar

[8] C. Sand, M. Meiners, J. Daberkow, J. Franke, Concept for a virtual process data linkage of assembly stations and a dynamic envelope curve for process monitoring, 6th International Electric Drives Production Conference (EDPC), (2016).

DOI: 10.1109/edpc.2016.7851338

Google Scholar

[9] T. Fassberg, et al., An Empirical Study Towards a Definition of Production Complexity, in: 21st International Conference on Production Research (ISAM), Stuttgart, (2011).

Google Scholar

[10] W. Kötter, M. Schwarz-Kocher, C. Zanker, Balanced GPS: Ganzheitliche Produktionssysteme mit stabil-flexiblen Standards und konsequenter Mitarbeiterorientierung, Springer Fachmedien, Wiesbaden, (2016).

DOI: 10.1007/978-3-658-03515-0

Google Scholar

[11] M. Schubert, et al., Nagios 3 Enterprise Network Monitoring, Syngress, Burlington, ISBN 1-59749-267-1. (2008).

Google Scholar

[12] SPLUNK INC.: Splunk Enterprise – Documentation. (2017) URL: https: /docs. splunk. com/Documentation/Splunk.

DOI: 10.2172/1735859

Google Scholar

[13] R. Mitkov, The Oxford Handbook of Computational Linguistics, Oxford University Press, ISBN 978-0-19-927634-9. 2003, p.754.

Google Scholar

[14] S. Sorkin, Large-scale unstructured data retrieval and analysis using splunk, SPLUNK INC., San Francisco, (2011).

Google Scholar

[15] R. M. Ford, Studyguide for Design for Electrical and Computer Engineers, Cram101, (2011).

Google Scholar

[16] C. Sand, D. Funk, S. Baumann, J. Franke, Data Mining – Einsatzpotenziale im Reklamationsmanagement, in: ZWF 06/2016, (2016), pp.329-332.

DOI: 10.3139/104.111535

Google Scholar

[17] C. Sand, T. Lechler, M. Neher, D. Schweigert, S. Kawan, J. Franke, Potentials for error detection and quality improvement in assembly lines using FFT, clustering and dynamic envelope curve, to be published.

DOI: 10.4028/www.scientific.net/amm.871.52

Google Scholar

[18] D. Carasso, Splunk for SQL users, SPLUNK INC., USA, (2012).

Google Scholar

[19] DB-Engines - Knowledge Base of Relational and NoSQL Database Management Systems, System Properties Comparison Microsoft SQL Server vs. Splunk, (2017). URL: https: /db-engines. com/en/system/Microsoft+SQL+Server%3bSplunk.

DOI: 10.1007/978-1-4842-7047-9_3

Google Scholar