Investigation of Thermoplastic Starch/Fiber Blend: Effect of Tapioca Residue on the Mechanical Properties and Surface Study

Article Preview

Abstract:

The aim of this study was to characterize thermoplastic starch containing corn starch and tapioca residues, which were used as reinforcement in a blended matrix. In the process, the composites were prepared with different tapioca residue contents at 20, 30, 40, 50 and 60 % by weight using compression molding at 135 °C for 8 min. Subsequently, their mechanical, thermal and morphology properties were evaluated. The results showed that the reinforcing effect of tapioca residue lead an increase in the stiffness of the samples. Young’s modulus increased with higher tapioca residue content. When the loading of tapioca residue increased tensile strength for 80/20 and 70/30 mixtures from 7.46 to 8.58 MPa. In addition to the highest of tapioca residue could increase tensile strength dramatically. Further, the glass transition temperature tended to decrease with the increased loading of tapioca residue. Moreover, the morphology showed that the increment of tapioca residue content appeared embedded in the polymer matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-127

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Sahari, S. M. Sapuan, E. S. Zainudin , M. A. Maleque, Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata), Carbohydr. Polym. 92 (2013) 1711-1716.

DOI: 10.1016/j.carbpol.2012.11.031

Google Scholar

[2] T. Kaisone, N. Harnkarnsujarit, T. Leejarkpai, T. Nampitch, Mechanical and Thermal Properties of Toughened PLA Composite Foams with Modified Coconut Fiber, Appl. Mech. Mater. 851 (2016) 179-185.

DOI: 10.4028/www.scientific.net/amm.851.179

Google Scholar

[3] E. P. Pacheco, J. C. C. Pinto, V. M. M. Huchin, I. A. E. Mota, R. J. E. León, L. C. Guerrero, Thermoplastic Starch (TPS) Cellulosic Fibers Composites: Mechanical Properties and Water Vapor Barrier: A Review, Comp. Renew. Sustain. Mater. (2016).

DOI: 10.5772/65397

Google Scholar

[4] A. L. Da Róz, P. V. -Santos, A. M. Ferreira, T. C. R. Antunes, F. de L. Leite, F. M. Yamaji, A. J. F. de Carvalho, Water Susceptibility and Mechanical Properties of Thermoplastic Starch–Pectin Blends Reactively Extruded with Edible Citric Acid, Mat. Res. 19 (2016).

DOI: 10.1590/1980-5373-mr-2015-0215

Google Scholar

[5] M. Kaseem, K. Hamad, F. Deri, Rheological and mechanical properties of polypropylene/thermoplastic starch blend, Polym. Bulletin. 68 (2012) 1079–1091.

DOI: 10.1007/s00289-011-0611-z

Google Scholar

[6] M. A. Shirai, J. B. Olivato, I. M. Demiate, C. M. O. Müller, M. V. E. Grossmann, F. Yamashita, Poly(lactic acid)/thermoplastic starch sheets: effect of adipate esters on the morphological, mechanical and barrier properties, Polímeros. 26 (2016).

DOI: 10.1590/0104-1428.2123

Google Scholar

[7] T. Kaisone, N. Harnkarnsujarit, T. Leejarkpai, T. Nampitch, Mechanical and Thermal Properties of Toughened PLA Composite Foams with Modified Coconut Fiber, Appl. Mech. Mater. 851 (2016) 179-185.

DOI: 10.4028/www.scientific.net/amm.851.179

Google Scholar

[8] T. Oniszczuk, A. Wójtowicz, L. Moácicki, M. Mitrus, K. Kupryaniuk, A. Kusz, G. Bartnik, Effect of natural fibres on the mechanical properties of thermoplastic starch, Int. Agrophys. 30 (2016) 211-218.

DOI: 10.1515/intag-2015-0080

Google Scholar

[9] Y. Song, Q. Zheng, Z. Lai, Properties of thermo-molded Gluten/Glycerol/Silica Composites, Chinese J. Polym. Sci. 26 (2008) 631−638.

DOI: 10.1142/s0256767908003369

Google Scholar

[10] A. S. Shekarabi, A. R. Oromiehie, A. Vaziri, M. Ardjmand, A. A. Safekordi, Effect of Glycerol Concentration on Physical Properties of Composite Edible Films Prepared from Plums Gum and Carboxy Methyl Cellulose, Ind. J. Fund. Appl. Life Sci. 4 (2014).

DOI: 10.1002/fsn3.177

Google Scholar

[11] M. G. A. Vieira, M. A. da Silva, L. O. dos Santos, M. M. Beppu, Natural-based plasticizers and biopolymer films: A review, Eur. Polym. J. 47 (2011) 254-263.

DOI: 10.1016/j.eurpolymj.2010.12.011

Google Scholar

[12] M. L. Sanyang, S. M. Sapuan, M. Jawaid, M. R. Ishak, J. Sahari, Effect of glycerol and sorbitol plasticizers on physical and thermal properties of sugar palm starch based films, Energy. Environ. Eng. S. (2015) 157-162.

DOI: 10.3390/polym7061106

Google Scholar

[13] L. Lendvai1, Ákos Kmetty, József Karger-Kocsis. Preparation and Properties of Thermoplastic Starch/Bentonite Nanocomposites. Mater. Sci. Forum 885 (2017) 129-134.

DOI: 10.4028/www.scientific.net/msf.885.129

Google Scholar

[14] F. Z. Arrakhiz, M. El Achaby, M. Malha, M. O. Bensalah, O. Fassi-Fehri, R. Bouhfid, K. Benmoussa, A. Qaiss, Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene, Mater. Des. 43 (2013).

DOI: 10.1016/j.matdes.2012.06.056

Google Scholar

[15] J. Gironès, J. P. López, P. Mutjé, A. J. F. Carvalho, A. A. S. Curvelo, F. Vilaseca. Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Comp. Sci. Tech. 72 (2012) 858-863.

DOI: 10.1016/j.compscitech.2012.02.019

Google Scholar