[1]
J. Sahari, S. M. Sapuan, E. S. Zainudin , M. A. Maleque, Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata), Carbohydr. Polym. 92 (2013) 1711-1716.
DOI: 10.1016/j.carbpol.2012.11.031
Google Scholar
[2]
T. Kaisone, N. Harnkarnsujarit, T. Leejarkpai, T. Nampitch, Mechanical and Thermal Properties of Toughened PLA Composite Foams with Modified Coconut Fiber, Appl. Mech. Mater. 851 (2016) 179-185.
DOI: 10.4028/www.scientific.net/amm.851.179
Google Scholar
[3]
E. P. Pacheco, J. C. C. Pinto, V. M. M. Huchin, I. A. E. Mota, R. J. E. León, L. C. Guerrero, Thermoplastic Starch (TPS) Cellulosic Fibers Composites: Mechanical Properties and Water Vapor Barrier: A Review, Comp. Renew. Sustain. Mater. (2016).
DOI: 10.5772/65397
Google Scholar
[4]
A. L. Da Róz, P. V. -Santos, A. M. Ferreira, T. C. R. Antunes, F. de L. Leite, F. M. Yamaji, A. J. F. de Carvalho, Water Susceptibility and Mechanical Properties of Thermoplastic Starch–Pectin Blends Reactively Extruded with Edible Citric Acid, Mat. Res. 19 (2016).
DOI: 10.1590/1980-5373-mr-2015-0215
Google Scholar
[5]
M. Kaseem, K. Hamad, F. Deri, Rheological and mechanical properties of polypropylene/thermoplastic starch blend, Polym. Bulletin. 68 (2012) 1079–1091.
DOI: 10.1007/s00289-011-0611-z
Google Scholar
[6]
M. A. Shirai, J. B. Olivato, I. M. Demiate, C. M. O. Müller, M. V. E. Grossmann, F. Yamashita, Poly(lactic acid)/thermoplastic starch sheets: effect of adipate esters on the morphological, mechanical and barrier properties, Polímeros. 26 (2016).
DOI: 10.1590/0104-1428.2123
Google Scholar
[7]
T. Kaisone, N. Harnkarnsujarit, T. Leejarkpai, T. Nampitch, Mechanical and Thermal Properties of Toughened PLA Composite Foams with Modified Coconut Fiber, Appl. Mech. Mater. 851 (2016) 179-185.
DOI: 10.4028/www.scientific.net/amm.851.179
Google Scholar
[8]
T. Oniszczuk, A. Wójtowicz, L. Moácicki, M. Mitrus, K. Kupryaniuk, A. Kusz, G. Bartnik, Effect of natural fibres on the mechanical properties of thermoplastic starch, Int. Agrophys. 30 (2016) 211-218.
DOI: 10.1515/intag-2015-0080
Google Scholar
[9]
Y. Song, Q. Zheng, Z. Lai, Properties of thermo-molded Gluten/Glycerol/Silica Composites, Chinese J. Polym. Sci. 26 (2008) 631−638.
DOI: 10.1142/s0256767908003369
Google Scholar
[10]
A. S. Shekarabi, A. R. Oromiehie, A. Vaziri, M. Ardjmand, A. A. Safekordi, Effect of Glycerol Concentration on Physical Properties of Composite Edible Films Prepared from Plums Gum and Carboxy Methyl Cellulose, Ind. J. Fund. Appl. Life Sci. 4 (2014).
DOI: 10.1002/fsn3.177
Google Scholar
[11]
M. G. A. Vieira, M. A. da Silva, L. O. dos Santos, M. M. Beppu, Natural-based plasticizers and biopolymer films: A review, Eur. Polym. J. 47 (2011) 254-263.
DOI: 10.1016/j.eurpolymj.2010.12.011
Google Scholar
[12]
M. L. Sanyang, S. M. Sapuan, M. Jawaid, M. R. Ishak, J. Sahari, Effect of glycerol and sorbitol plasticizers on physical and thermal properties of sugar palm starch based films, Energy. Environ. Eng. S. (2015) 157-162.
DOI: 10.3390/polym7061106
Google Scholar
[13]
L. Lendvai1, Ákos Kmetty, József Karger-Kocsis. Preparation and Properties of Thermoplastic Starch/Bentonite Nanocomposites. Mater. Sci. Forum 885 (2017) 129-134.
DOI: 10.4028/www.scientific.net/msf.885.129
Google Scholar
[14]
F. Z. Arrakhiz, M. El Achaby, M. Malha, M. O. Bensalah, O. Fassi-Fehri, R. Bouhfid, K. Benmoussa, A. Qaiss, Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene, Mater. Des. 43 (2013).
DOI: 10.1016/j.matdes.2012.06.056
Google Scholar
[15]
J. Gironès, J. P. López, P. Mutjé, A. J. F. Carvalho, A. A. S. Curvelo, F. Vilaseca. Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Comp. Sci. Tech. 72 (2012) 858-863.
DOI: 10.1016/j.compscitech.2012.02.019
Google Scholar