Pedestrian Crowd Detection Based Unmanned Aerial Vehicle Infrared Imagery

Article Preview

Abstract:

Human detection is a keyproblem in computer vision. Recently, some research has been focusing on the detection ofpedestrianusing infrared images. The infrared images have outstanding merit. It depends only on object's temperature, but not on color or texture. In this paper, the pedestrian crowd detection approach is proposed. The approach is compose of ROI blocks extraction and crowd block recognition. ROI blocks can be extracted with circle gradient operator and weighted geometric filtering. Crowd blocks are recognized by support vector machine, which combines histogram of oriented gradient and circle gradient. The experimental results show thatthe approach works effectively in different scenes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

347-352

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. T. Wang. D. B. Chen. H. Y. Chen. J. Y. Yang. On pedestrian detection and tracking in infrared videos, Patt. Recog. Lett. 33 (2012) 775-785.

Google Scholar

[2] F. Xu. X. Liu. K. Fujimura. Pedestrian detection and tracking with night vision. IEEE Trans. Intell. Transp. Syst. 6 (2005) 63-71.

DOI: 10.1109/tits.2004.838222

Google Scholar

[3] J. Li. W. Gong. W. Li. X. Liu. Robust pedestrian detection in thermal infrared imagery using the wavelet transform, Infr. Phys. Tech. 53 (2010) 267-273.

DOI: 10.1016/j.infrared.2010.03.005

Google Scholar

[4] H. Sun. C. Wang. B. Wang. E. S. Naser. Pyramic binary pattern features for real-time pedestrian detection from infrared videos, Neuro Comp. 74 (2011) 797-804.

DOI: 10.1016/j.neucom.2010.10.009

Google Scholar

[5] A. D. Ciotec, V. E. Neagoe, A. P. Barar, Concurrent self-organizing maps for pedestrian in thermal imagery, Sci. Bull. Ser. C75(4) (2013) 45-56.

Google Scholar

[6] H. Sun, C. Wang, B. Wang, N. EI-Sheimy, Pyramid binary pattern features for real-time pedestrian detection from infrared videos, Elsevier Neuro Comput. 74 (2011) 797-804.

DOI: 10.1016/j.neucom.2010.10.009

Google Scholar

[7] A. Fernandez-Caballero, M. T. Lopez. J. Serrano-Cuerda, Thermal-Infrared Pedestrian ROI Extraction through Thermal and Motion Information Fusion, Sensors 14 (2014) 6666-6676.

DOI: 10.3390/s140406666

Google Scholar

[8] Ge. J. Luo, Y. Tei. G, Real-Time Pedestrian Detection and Tracking at Nighttime for Driver-Assistance Systems, IEEE Trans. Intel. Transp. Syst. 10 (2009) 283-298.

DOI: 10.1109/tits.2009.2018961

Google Scholar

[9] X. Y. Zhao. Z. X. He. S. Y. Zhang. D. Liang. Robust pedestrian detection in thermal infrared imagery using a shape distribution histogram feature and modified sparse representation classification, Patt. Recognit. 48 (2015) 1947-(1960).

DOI: 10.1016/j.patcog.2014.12.013

Google Scholar

[10] E. S. Jeon. J. S. Choi. J. H. Lee. K. Y. Shin. Y. G. Kim. T. T. Le. K. R. Park. Human Detection Based on the Generation of a Background Image by Using a Far-Infrared Light Camera, Sensors, 15 (2015) 6763-6788.

DOI: 10.3390/s150306763

Google Scholar

[11] J. Portmann. S. Lynen. M. Chli. R. Siegwart. People detection and tracking from aerial thermal views, In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), (2014) 1794-1800.

DOI: 10.1109/icra.2014.6907094

Google Scholar

[12] Y. L. Ma, X. K. Wu, Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle, Sensors, 16 (2016) 446-471.

DOI: 10.3390/s16040446

Google Scholar

[13] I. Rhone-Alps, Histograms of Oriented Gradients for Human Detection, Intel Conferences on Computer Vision & Pattern Recognition. (2005) 886-893.

Google Scholar