Influence of Pore Structure on Chloride Distribution in Surface Layer of Cement Paste under Cyclic Wet-Dry Condition

Article Preview

Abstract:

This research focuses on influence of pore structure on chloride distribution in surface layer of cement paste under cyclic wet-dry condition. The results of chloride distribution reveal that drying and wetting cycles can lead to a peak value of chloride content (Cmax) occurring in surface layer of cement paste. Cmax increases with the increase of W/C. While the depth (Δx) at which Cmax appears does not show a regular change. Moreover, Cmax should be used to predict service life of concrete structures when Cmax appears in the chloride profiles. For the influence of pore structure, there exists an obvious hyperbolic relationship between chloride diffusion coefficient (D), Cmax and pore structure parameters. D and Cmax increase with total porosity and the most probable pore diameter, decrease with tortuosity, and stabilize gradually. And the most probable pore diameter has the most significant impact on D and Cmax. In addition, XRD and SEM-EDS results indicate that the deposition of Friedel’s salt results in the formation of more inkbottle shaped pores, which may cause the appearance of Cmax under cyclic drying-wetting conditions due to hysteretic moisture effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-173

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. B. Hwan, S. Y. Jang, Effects of material and environmental parameters onchloride penetration profiles in concrete structures, Cem. Concr. Res. 37(1) (2007) 47-53.

Google Scholar

[2] P. K. Mehta, Concrete structure, properties and materials, Ed Prentice-Hall., (1986), pp.105-169.

Google Scholar

[3] A. Khelidj, A. Loukili, G. Bastian, Experimental study of the hydro-chemicalcoupling inside maturing concretes effect on various types of shrinkage, Mater. Struct. 31(9) (1998) 588-594.

DOI: 10.1007/bf02480608

Google Scholar

[4] E. P. Nielsen, M. R. Geiker, Chloride diffusion in partially saturated cementitiousmaterial, Cem. Concr. Res. 33(1) (2003) 133-138.

Google Scholar

[5] C. Arya, S. Bioubakhsh, P. Vassie, Chloride penetration in concretesubject to wet–dry cyclinginfluence of pore structure, Struct. Build. 167(SB6) (2014) 343-354.

DOI: 10.1680/stbu.12.00067

Google Scholar

[6] K. Hong, R. D. Hooton, Effects of cyclic chloride exposure on penetration of concrete cover, Cem. Concr. Res. 29 (1999) 1379-1386.

DOI: 10.1016/s0008-8846(99)00073-3

Google Scholar

[7] R. B. Polder, H. A. Willy, Characterization of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity, Cem. Concr. Compos. 24 (2002) 427-435.

DOI: 10.1016/s0958-9465(01)00074-9

Google Scholar

[8] B. F. Amor, S. Bonnet, A. Khelidj, New approach for coupled chloride/moisture transport in non-saturated concrete with and without slag, Constr. Build. Mater. 35 (2012) 761-771.

DOI: 10.1016/j.conbuildmat.2012.04.106

Google Scholar

[9] Z. Yu, Y. Chen, P. Liu, Accelerated simulation of chloride ingress into concrete under drying-wetting alternation condition chloride environment, Constr. Build. Mater. 93 (2015) 205-213.

DOI: 10.1016/j.conbuildmat.2015.05.090

Google Scholar

[10] T. C. Powers, Structures and physical properties of hardened portland cement paste, J. Am. Ceram. Soc. 41 (1958) 5-15.

Google Scholar

[11] M. Zhang, H. Li, Pore structure and chloride permeability of concrete containing nano-particles for pavement, Constr. Build. Mater. 25 (2011) 608-616.

DOI: 10.1016/j.conbuildmat.2010.07.032

Google Scholar

[12] N. Neithalath, J. Jain, Relating rapid chloride transport parameters of concretes to microstructural featuresextracted from electrical impedance, Cem. Concr. Res. 40 (2010) 1041-1051.

DOI: 10.1016/j.cemconres.2010.02.016

Google Scholar

[13] Z. Yu, G. Ye, The pore structure of cement paste blended with fly ash, Constr. Build. Mater. 45 (2013) 30-35.

DOI: 10.1016/j.conbuildmat.2013.04.012

Google Scholar

[14] R. Loser, B. Lothenbach, An. Leemann, Chloride resistance of concrete and its binding capacity-Comparison betweenexperimental results and thermodynamic modeling, Cem. Concr. Compos. 32 (2010) 34-42.

DOI: 10.1016/j.cemconcomp.2009.08.001

Google Scholar

[15] S. Tina, S. Pejovnik, G. D. Schutter, Chloride ion penetration into fly ash modified concrete during wetting-drying cycles, Constr. Build. Mater. 93 (2015) 1216-1223.

DOI: 10.1016/j.conbuildmat.2015.04.033

Google Scholar

[16] J. Liu, F. Xing, B. Dong, Study on water sorptivity of the surface layer of concrete, Mater. Struct. 47 (2014) 1941-(1951).

DOI: 10.1617/s11527-013-0162-x

Google Scholar

[17] H. Chang, S. Mu, D. Xie, P. Wang, Influence of pore structure and moisture distribution on chloride maximum phenomenon, in surface layer of specimens exposed to cyclic drying-wetting condition, Constr. Build. Mater. 131(1) (2017) 16-30.

DOI: 10.1016/j.conbuildmat.2016.11.071

Google Scholar

[18] H. Chang, S. Mu, J. Liu, Chloride Distribution Feature in Surface Layer of Cement Paste under Cyclic Drying-Wetting Condition, Key. Eng. Mater. 711 (2016) 367-374.

DOI: 10.4028/www.scientific.net/kem.711.367

Google Scholar

[19] C. Andrade, M. A. Climent, G. deVera, Procedure for calculating the chloride diffusion coefficient and surface concentration from a profile having a maximum beyond the concrete surface, Mater. Struct. 48 (2015) 863–869.

DOI: 10.1617/s11527-015-0543-4

Google Scholar

[20] H. Ye, N. Jin, X. Jin, Model of chloride penetration into cracked concrete subject to drying-wetting cycles, Constr. Build. Mater. 36 (2012) 259-269.

DOI: 10.1016/j.conbuildmat.2012.05.027

Google Scholar

[21] R. A. Cook, K. C. Hover, Mercury porosimetry of hardened cement paste, Cem. Concr. Res. 31(2) (1999) 933-943.

DOI: 10.1016/s0008-8846(99)00083-6

Google Scholar

[22] H. Pavla, J. D. Rachel, Water permeability and chloride ion diffusion in Portland cement mortars relationship to sand content and critical pore diameter, Cem. Concr. Res. 25(4) (1995) 790-802.

DOI: 10.1016/0008-8846(95)00069-o

Google Scholar

[23] J. Hu, P. Stroeven, Proper characterisation of pore size distribution in cementitious materials, Key Eng. Mater. 302-303 (2006) 479-85.

DOI: 10.4028/www.scientific.net/kem.302-303.479

Google Scholar

[24] R. Luo, Y. Cai, C. Wang, Study of chloride binding and diffusion in GGBS concrete, Cem. Concr. Res. 33(1) (2003) 1-7.

Google Scholar

[25] T. M. Chrisp, W. T. Mccarter, G. Starrs, Depth related variation in conductivity to study coverzone concrete during wetting and drying, Cem. Concr. Compos. 24(5) (2002) 415-426.

DOI: 10.1016/s0958-9465(01)00073-7

Google Scholar

[26] J. Ožbolt, F. Orsanic, G. Balabanic, Modeling influence of hysteretic moisture behavior on distribution of chlorides in concrete, Cem. Concr. Compos. 63 (2016) 73-84.

DOI: 10.1016/j.cemconcomp.2016.01.004

Google Scholar

[27] C. Li, Study on Water and Ionic Transport Processes in Cover Concrete under Drying-wetting Cycles, Tsinghua University, Beijing, China, (2009).

Google Scholar

[28] T. Ishida, T. Kishi, K. Maekawa, Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history, Cem. Concr. Res. 37(2) (2007) 565-578.

DOI: 10.1016/j.cemconres.2006.11.015

Google Scholar

[29] Zibara Hassan, Binding of external chloride by cement pastes, PhD thesis, University of Toronto, Canada, (2001).

Google Scholar

[30] S. Nagataki, N. Otsuki, T. H. Wee, Condensation of chloride ion in hardened cement matrix materials and on embedded steel bars, ACI Mater. J. 90(4) (1993) 323-332.

DOI: 10.14359/3885

Google Scholar