Mesoporous Iron-Manganese Magnetic Bimetal Oxide for Efficient Removal of Cr(VI) from Synthetic Aqueous Solution

Article Preview

Abstract:

A facile co-precipitation method was established for synthesis of mesoporous iron-manganese magnetic bimetal oxide (MIMO) and its adsorption property was studied for removal of toxic metal ion hexavalent chromium from aqueous solution. XRD pattern of MIMO confirms the existence of Fe2O3 and Mn3O4 particle, out of which Mn3O4 is ferrimagnetic in nature. Synthesized MIMO has shown high saturation magnetization (23.08 emu/g), high BET surface area (178.27 m2/g) and high pore volume (0.484 cm3/g), which makes it a potential adsorbent. Adsorption process followed second order kinetic and Langmuir isotherm model. Involvement of intra-particle diffusion is also confirmed from kinetic data, which can be attributed to the mesoporous nature of the MIMO. Cr(VI) adsorption shows high pH dependency and maximum adsorption capacity of 116.25 mg/g is reported at pH 2.0. Electrostatic attraction between anionic chromium species and protonated MIMO surface is the predominant mechanism in this adsorption process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Debnath, A., Majumder, M., Pal, M., Das, N. S., Chattopadhyay, K. K., & Saha, B. (2016).J. Dispersion Sci. Technol., 37(12), 1806-1818.

Google Scholar

[2] Wang, Z., & Ge, H. (2015). J. Dispersion Sci. Technol., 36(8), 1106-1114.

Google Scholar

[3] Rajput, S., Pittman, C. U., & Mohan, D. (2016).J. Colloid Interface Sci., 468, 334-346.

Google Scholar

[4] Ozer, C., Boysan, F., Imamoglu, M., & Yildiz, S. Z. (2016).J. Dispersion Sci. Technol., 37(6), 860-865.

Google Scholar

[5] Wang, Y., Liu, D., Lu, J., & Huang, J. (2015). Colloids Surf., A, 481, 133-142.

Google Scholar

[6] Bhowmik, K. L., Debnath, A., Nath, R. K., Das, S., Chattopadhyay, K. K., & Saha, B. (2016). J. Mol. Liq., 219, 1010-1022.

Google Scholar

[7] Sadegh, H., Ali, G. A., Gupta, V. K., Makhlouf, A. S. H., Shahryari-ghoshekandi, R., Nadagouda, M. N., & Megiel, E. (2017). Journal of Nanostructure in Chemistry, 1-14.

DOI: 10.1007/s40097-017-0219-4

Google Scholar

[8] Zhang, Y. R., Wang, S. Q., Shen, S. L., & Zhao, B. X. (2013). Chem. Eng. J., 233, 258-264.

Google Scholar

[9] Idris, A., Hassan, N., Ismail, N. S. M., Misran, E., Yusof, N. M., Ngomsik, A. F., & Bee, A. (2010). water research, 44(6), 1683-1688.

DOI: 10.1016/j.watres.2009.11.026

Google Scholar

[10] Dubal, D. P., Dhawale, D. S., Salunkhe, R. R., Fulari, V. J., & Lokhande, C. D. (2010).J. Alloys Compd., 497(1), 166-170.

DOI: 10.1016/j.jallcom.2010.02.182

Google Scholar

[11] Shokri Khoubestani, R., Mirghaffari, N., & Farhadian, O. (2015). Environ. Prog. Sustainable Energy, 34(4), 949-956.

DOI: 10.1002/ep.12071

Google Scholar

[12] Lv, Z., Liang, C., Cui, J., Zhang, Y., & Xu, S. (2015). RSC Adv., 5(24), 18213-18217.

Google Scholar