[1]
Fin BK., Performance metrics for composite integral armor. J of Thermoplast Compos Mater 2000; 13 (10): 417-431.
Google Scholar
[2]
Wilkins ML, Cline CF, Honodel CA., Forth progress report of light armour program. Report UCRL 50694 Lawrence Radiation laboratory, University of California; (1969).
DOI: 10.2172/4173151
Google Scholar
[3]
Wilkins ML., Mechanics of penetration and perforation. Int J Eng Sci 1978; 16: 793-807.
Google Scholar
[4]
Wilkins ML., Computer simulation of penetration phenomenon. In: Laible RC, editor. Ballistic materials and penetration mechanics. Amsterdam: Elsevier; 1980. P. 225-52.
DOI: 10.1016/b978-0-444-41928-6.50015-6
Google Scholar
[5]
Viechnicki DJ, Anctil AA, papetti DJ, Prifty JJ., Lightweight armor-a progress report. US Army MTL TR 89-8; (1989).
Google Scholar
[6]
Nicol B, Pattie SD, O'Donnell RG, Woodward RL. Fracture of ceramic in composite armors. In: Fracture mechanics in engineering practice. Melbourne University: Conference of Australian Fracture Group; (1988).
Google Scholar
[7]
Woodward RL, O'Donnell RG, Baxter BJ, Nicol B, Pattie SD., Energy absorption in the failure of ceramic composite armours. Materials Forum (1989).
Google Scholar
[8]
Cortes R, Navarro C, Martinez MA, Rodriguez J, Sanchez-Galvez V., Numerical modeling of normal impact on ceramic composite armours. Int J Imp Eng 1992; 12 (4): 639-51.
DOI: 10.1016/0734-743x(92)90281-w
Google Scholar
[9]
Navarro C, Martinez MA, Cortes R, Sanchez-Galvez V., Some Observations on normal impact on ceramic faced armours backed by composite plates. Int J Imp Eng 1993; 13 (1): 145-56.
DOI: 10.1016/0734-743x(93)90113-l
Google Scholar
[10]
Rajendran AM., Modeling the impact behavior of AD85 ceramic under multiaxial loading. Int J Imp Eng 1994; 15(6): 749-68.
DOI: 10.1016/0734-743x(94)90033-h
Google Scholar
[11]
Rajendran AM, Dandekar DP., Inelastic response of alumina. Int J Imp Eng 1995; 17: 649-60.
Google Scholar
[12]
Rajendran AM, Grove DJ., Modeling the shock response of silicon carbide, boron carbide and titanium diboride. Int J Imp Eng 1996; 18 (6) 611-31.
DOI: 10.1016/0734-743x(96)89122-6
Google Scholar
[13]
Zaera R, et al., Modeling of the adhesive layer in mixed ceramic/metal armours subjected to impact. COMPOS. Part A: APPL. SCI Manuf 2000; 31, 823.
DOI: 10.1016/s1359-835x(00)00027-0
Google Scholar
[14]
Lee M, Yoo YH., Analysis of ceramic/metal armour systems. Int J Imp Eng 2001; 25: 819-829.
Google Scholar
[15]
Abrate S., Modeling of impact on composite structures. COMPOS Struct 2001; 51: 129-138.
Google Scholar
[16]
Espinosa HD. et al., A numerical investigation of penetration in multilayered material material/ structure systems. Int J Imp Eng 1998; 35 (22) 2975-3001.
DOI: 10.1016/s0020-7683(97)60353-4
Google Scholar
[17]
Florence AL., Intraction of projectiles and composite armour. Part II. Stanford Research Institule, Menlo Park, California, USA; (1969).
Google Scholar
[18]
Woodward RL. A simple one-dimensional approach to modeling ceramic composite armour defeat. Int J Imp Eng 1990; 9 (4) 455-74.
Google Scholar
[19]
Den Reijer PC., Impact on ceramic faced armors. Ph. D. Thesis. Delft University of Technology (1991).
Google Scholar
[20]
Zaera R, Sanchez-Galvez A., Analytical modeling of normal and oblique ballistic impact on ceramic/ metal lightweight armours. Int J Imp Eng 1998; 21 (3) 133-148.
DOI: 10.1016/s0734-743x(97)00035-3
Google Scholar
[21]
Johnson W., Impact strength of materials. Edward Arnold; (1972).
Google Scholar
[22]
Cristescu N., Dynamic plasticity. North Holland; (1967).
Google Scholar
[23]
Goldsmith W., Impact: the theory and physical behavior of colliding solids. Edward Arnold: (1960).
Google Scholar