[1]
G. Stefanou. The stochastic finite element method: Past, present and future. Computer Methods in Applied Mechanics and Engineering, 198(9-12) (2009), 1031-1051.
DOI: 10.1016/j.cma.2008.11.007
Google Scholar
[2]
D. Moens, & M. Hanss. Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances. Finite Elements in Analysis and Design, 47(1) (2011), 4-16.
DOI: 10.1016/j.finel.2010.07.010
Google Scholar
[3]
M. Beer, S. Ferson, & V. Kreinovich. Imprecise probabilities in engineering analyses. Mechanical Systems and Signal Processing, 37(1-2) (2013), 4-29.
DOI: 10.1016/j.ymssp.2013.01.024
Google Scholar
[4]
W. Betz, I. Papaioannou, & D. Straub. Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion. Computer Methods in Applied Mechanics and Engineering, 271 (2014), 109-129.
DOI: 10.1016/j.cma.2013.12.010
Google Scholar
[5]
W. Verhaeghe, W. Desmet, D. Vandepitte & D. Moens. Interval fields to represent uncertainty on the output side of a static FE analysis. Computer Methods in Applied Mechanics and Engineering, 260 (2013), 50-62.
DOI: 10.1016/j.cma.2013.03.021
Google Scholar
[6]
F. Fedele, R. L. Muhanna, N. Xiao, R. L. Mullen, Interval-Based Approach for Uncertainty Propagation in Inverse Problems, Journal of Engineering Mechanics 4 (1) (2014) 1-7.
DOI: 10.1061/(asce)em.1943-7889.0000815
Google Scholar
[7]
S.-E. Fang, Q.-H. Zhang, W.-X. Ren, An interval model updating strategy using interval response surface models, Mechanical Systems and Signal Processing 60-61 (2015) 909-927.
DOI: 10.1016/j.ymssp.2015.01.016
Google Scholar
[8]
H. H. Khodaparast, J. E. Mottershead, K. J. Badcock, Interval model updating with irreducible uncertainty using the Kriging predictor, Mechanical Systems and Signal Processing 25 (4) (2011) 1204-1206.
DOI: 10.1016/j.ymssp.2010.10.009
Google Scholar
[9]
M. Broggi, M. Faes, E. Patelli, Y. Govers, D. Moens, M. Beer. Comparison of Bayesian and Interval Uncertainty Quantification: Application to the AIRMOD Test Structure. 2017 SSCI Proceedings (2017), 1684-1691.
DOI: 10.1109/ssci.2017.8280882
Google Scholar
[10]
E. Patelli, Y. Govers, M. Broggi, H. M. Gomes, M. Link & J.E. Mottershead. Sensitivity or Bayesian model updating: a comparison of techniques using the DLR AIRMOD test data. Archive of Applied Mechanics, 87(5) (2017), 905-925.
DOI: 10.1007/s00419-017-1233-1
Google Scholar
[11]
M. Faes, J. Cerneels, D. Vandepitte & D. Moens. Identification of Interval fields for spatial uncertainty representation in Finite Element models. Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering: Vol. 7. European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June (2016).
DOI: 10.7712/100016.2243.4995
Google Scholar
[12]
M. Faes, J. Cerneels, D. Vandepitte & D. Moens. Identification and quantification of multivariate interval uncertainty in finite element models. Computer Methods in Applied Mechanics and Engineering , 315 (2017), 896 - 920.
DOI: 10.1016/j.cma.2016.11.023
Google Scholar
[13]
M. Faes & D. Moens. Identification and quantification of spatial interval uncertainty in numerical models. Computers and Structures, 192 (2017), 16-33.
DOI: 10.1016/j.compstruc.2017.07.006
Google Scholar
[14]
M. Hanss. The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets and Systems, 130(3) (2002), 277-289.
DOI: 10.1016/s0165-0114(02)00045-3
Google Scholar
[15]
A. Sofi & G. Muscolino. Static analysis of Euler-Bernoulli beams with interval Young's modulus. Computers and Structures, 156 (2015), 72-82.
DOI: 10.1016/j.compstruc.2015.04.002
Google Scholar
[16]
A. Sofi, G. Muscolino & M. Zingales. One-dimensional heterogeneous solids with uncertain elastic modulus in presence of long-range interactions: Interval versus stochastic analysis. Computers and Structures,122 (2013), 217-229.
DOI: 10.1016/j.compstruc.2013.03.005
Google Scholar
[17]
D. Wu, and W. Gao Uncertain static plane stress analysis with interval fields. International Journal for Numerical Methods in Engineering, 110(2017) 1272-1300.
DOI: 10.1002/nme.5457
Google Scholar
[18]
C. B. Barber, D. P. Dobkin & H. Huhdanpaa. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4) (1996), 469-483.
DOI: 10.1145/235815.235821
Google Scholar
[19]
M. Pavan, M. Faes, D. Strobbe, B. Van Hooreweder, T. Craeghs, D. Moens, & W. Dewulf. On the influence of inter-layer time and energy density on selected critical-to-quality properties of PA12 parts produced via laser sintering. Polymer Testing, 61 (2017).
DOI: 10.1016/j.polymertesting.2017.05.027
Google Scholar