Inverse Interval Field Quantification via Digital Image Correlation

Article Preview

Abstract:

This paper presents the application of a new method for the identification and quantification of interval valued spatial uncertainty under scarce data.Specifically, full-field strain measurements, obtained via Digital Image Correlation, are applied in conjunction with a quasi-static finite element model.To apply these high-dimensional but scarce data, extensions to the novel method are introduced.A case study, investigating spatial uncertainty in Young's modulus of PA-12 parts, produced via Laser Sintering, shows that an accurate quantification of the constituting uncertainty is possible, albeit being somewhat conservative with respect to deterministic values reported in literature.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] G. Stefanou. The stochastic finite element method: Past, present and future. Computer Methods in Applied Mechanics and Engineering, 198(9-12) (2009), 1031-1051.

DOI: 10.1016/j.cma.2008.11.007

Google Scholar

[2] D. Moens, & M. Hanss. Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances. Finite Elements in Analysis and Design, 47(1) (2011), 4-16.

DOI: 10.1016/j.finel.2010.07.010

Google Scholar

[3] M. Beer, S. Ferson, & V. Kreinovich. Imprecise probabilities in engineering analyses. Mechanical Systems and Signal Processing, 37(1-2) (2013), 4-29.

DOI: 10.1016/j.ymssp.2013.01.024

Google Scholar

[4] W. Betz, I. Papaioannou, & D. Straub. Numerical methods for the discretization of random fields by means of the Karhunen-Loève expansion. Computer Methods in Applied Mechanics and Engineering, 271 (2014), 109-129.

DOI: 10.1016/j.cma.2013.12.010

Google Scholar

[5] W. Verhaeghe, W. Desmet, D. Vandepitte & D. Moens. Interval fields to represent uncertainty on the output side of a static FE analysis. Computer Methods in Applied Mechanics and Engineering, 260 (2013), 50-62.

DOI: 10.1016/j.cma.2013.03.021

Google Scholar

[6] F. Fedele, R. L. Muhanna, N. Xiao, R. L. Mullen, Interval-Based Approach for Uncertainty Propagation in Inverse Problems, Journal of Engineering Mechanics 4 (1) (2014) 1-7.

DOI: 10.1061/(asce)em.1943-7889.0000815

Google Scholar

[7] S.-E. Fang, Q.-H. Zhang, W.-X. Ren, An interval model updating strategy using interval response surface models, Mechanical Systems and Signal Processing 60-61 (2015) 909-927.

DOI: 10.1016/j.ymssp.2015.01.016

Google Scholar

[8] H. H. Khodaparast, J. E. Mottershead, K. J. Badcock, Interval model updating with irreducible uncertainty using the Kriging predictor, Mechanical Systems and Signal Processing 25 (4) (2011) 1204-1206.

DOI: 10.1016/j.ymssp.2010.10.009

Google Scholar

[9] M. Broggi, M. Faes, E. Patelli, Y. Govers, D. Moens, M. Beer. Comparison of Bayesian and Interval Uncertainty Quantification: Application to the AIRMOD Test Structure. 2017 SSCI Proceedings (2017), 1684-1691.

DOI: 10.1109/ssci.2017.8280882

Google Scholar

[10] E. Patelli, Y. Govers, M. Broggi, H. M. Gomes, M. Link & J.E. Mottershead. Sensitivity or Bayesian model updating: a comparison of techniques using the DLR AIRMOD test data. Archive of Applied Mechanics, 87(5) (2017), 905-925.

DOI: 10.1007/s00419-017-1233-1

Google Scholar

[11] M. Faes, J. Cerneels, D. Vandepitte & D. Moens. Identification of Interval fields for spatial uncertainty representation in Finite Element models. Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering: Vol. 7. European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June (2016).

DOI: 10.7712/100016.2243.4995

Google Scholar

[12] M. Faes, J. Cerneels, D. Vandepitte & D. Moens. Identification and quantification of multivariate interval uncertainty in finite element models. Computer Methods in Applied Mechanics and Engineering , 315 (2017), 896 - 920.

DOI: 10.1016/j.cma.2016.11.023

Google Scholar

[13] M. Faes & D. Moens. Identification and quantification of spatial interval uncertainty in numerical models. Computers and Structures, 192 (2017), 16-33.

DOI: 10.1016/j.compstruc.2017.07.006

Google Scholar

[14] M. Hanss. The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets and Systems, 130(3) (2002), 277-289.

DOI: 10.1016/s0165-0114(02)00045-3

Google Scholar

[15] A. Sofi & G. Muscolino. Static analysis of Euler-Bernoulli beams with interval Young's modulus. Computers and Structures, 156 (2015), 72-82.

DOI: 10.1016/j.compstruc.2015.04.002

Google Scholar

[16] A. Sofi, G. Muscolino & M. Zingales. One-dimensional heterogeneous solids with uncertain elastic modulus in presence of long-range interactions: Interval versus stochastic analysis. Computers and Structures,122 (2013), 217-229.

DOI: 10.1016/j.compstruc.2013.03.005

Google Scholar

[17] D. Wu, and W. Gao Uncertain static plane stress analysis with interval fields. International Journal for Numerical Methods in Engineering, 110(2017) 1272-1300.

DOI: 10.1002/nme.5457

Google Scholar

[18] C. B. Barber, D. P. Dobkin & H. Huhdanpaa. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4) (1996), 469-483.

DOI: 10.1145/235815.235821

Google Scholar

[19] M. Pavan, M. Faes, D. Strobbe, B. Van Hooreweder, T. Craeghs, D. Moens, & W. Dewulf. On the influence of inter-layer time and energy density on selected critical-to-quality properties of PA12 parts produced via laser sintering. Polymer Testing, 61 (2017).

DOI: 10.1016/j.polymertesting.2017.05.027

Google Scholar