Generation Tool for Automated Thermal City Modelling

Article Preview

Abstract:

Constructing dynamic building models of entire urban districts or cities is a time consuming effort. An automation process is required to shorten the considerable time needed for manual input and to parameterize simulation tools. This paper presents a generation tool for fully automated thermal city modelling that generates dynamic building models with detailed heating systems. The tool is an interface between a PostgreSQL database and the dynamic building energy simulation environment IDA ICE. Tests show that up to 300 automated generated buildings with a simple geometry and 70 buildings each with a heating system can be simulated per CPU.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

292-299

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] United Nations, World Urbanization Prospects, (2014).

Google Scholar

[2] Information on http://ec.europa.eu/clima/policies/strategies/2030/index_en.htm.

Google Scholar

[3] H. Lund, S. Werner, R. Wiltshire, S. Svendsen, J. Eric Thorsen, F. Hvelplund, B.V. Mathiesen, 4th Generation District Heating (4GHD): Integrating smart thermal grids into future sustainable energy systems, Energy 68 (2014) 1-11.

DOI: 10.1016/j.energy.2014.02.089

Google Scholar

[4] L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy Build. 40 (3) (2008) 394-398.

DOI: 10.1016/j.enbuild.2007.03.007

Google Scholar

[5] J. Keirstead, M. Jennings, A. Sivakumar, A review of urban energy system models: Approaches, challenges and opportunities, Renewable and Sustainable Energy Reviews 16 (6) (2012) 3847-3866.

DOI: 10.1016/j.rser.2012.02.047

Google Scholar

[6] C.F. Reinhart, C.C. Davila, Urban building energy modeling – A review of a nascent field, Build. Environ. 97 (2016) 196-202.

DOI: 10.1016/j.buildenv.2015.12.001

Google Scholar

[7] G. Zucker, F. Judex, M. Blöchle, M. Köstl, E. Widl, S. Hauer, A. Bres, J. Zeilinger, A new method for optimizing operation of large neighborhoods of buildings using thermal simulation, Energy Build. 125 (2016) 153-160.

DOI: 10.1016/j.enbuild.2016.04.081

Google Scholar

[8] M. Fuchs, J. Teichmann, M. Lauster, P. Remmen, R. Streblow, D. Müller, Workflow automation for combined modeling of buildings and district energy systems, Energy 117 (2) (2016) 478-484.

DOI: 10.1016/j.energy.2016.04.023

Google Scholar

[9] U. Eicker, J. Schumacher, M. Zirak, N. Bartke, R. Nouvel, V. Coors, An Automated Method for Urban Energy Simulation Based on 3D City Models, in: Proceedings of 14th Conference of International Building Performance Simulation Association, India, 2015, pp.2477-2482.

DOI: 10.26868/25222708.2015.2938

Google Scholar

[10] T. Dogan, C. Reinhart, P. Michalatos, Autozoner: an algorithm for automatic thermal zoning of buildings with unknown interior space definitions, Journal of Building Performance Simulation 9 (2) (2016) 176-189.

DOI: 10.1080/19401493.2015.1006527

Google Scholar

[11] Information on https://www.postgresql.org.

Google Scholar

[12] Information on http://www.equa.se/en.

Google Scholar

[13] P. Nageler, G. Zahrer, R. Heimrath, T. Mach, F. Mauthner, I. Leusbrock, H. Schranzhofer, C. Hochenauer, Novel validated method for GIS based automated dynamic urban building energy simulations, Energy (2017).

DOI: 10.1016/j.energy.2017.07.151

Google Scholar

[14] Information on http://www.qgis.org/en/site.

Google Scholar

[15] Information on https://java.com/en.

Google Scholar

[16] Information on http://www.gis.steiermark.at/cms/beitrag/11696643/803916.

Google Scholar

[17] T. Loga, B. Stein. N. Diefenbach, TABULA building typologies in 20 European countries-Making energy-related features of residential building stocks comparable, Energy Build 132 (2016) 4-12.

DOI: 10.1016/j.enbuild.2016.06.094

Google Scholar

[18] Rainer E, et al. RAHMENPLAN ENERGIE Energy City Graz-Reininghaus: Endbericht RPE_ECR. Austrian Ministry for Transport, Innovation and Technology; (2015).

Google Scholar

[19] Swiss Society of Engineers and Architects, SIA 2024, Standard-Nutzungsbedingungen für die Energie- und Gebäudetechnik (2006).

Google Scholar

[20] H. Recknagel, E. Sprenger, K.-J. Albers, Taschenbuch für Heizung + Klimatechnik 2015/16 – Premium-Version, Deutscher Industrieverlag, (2015).

Google Scholar

[21] U. Jordan, K. Vajen, DHWcalc: Program to Generate Domestic Hot Water Profiles with Statistical Means for User Defined Conditions, in: Proceedings of the ISES Solar World Congress (2005).

Google Scholar

[22] P. Nageler, G. Schweiger, M. Pichler, D. Brandl, T. Mach, R. Heimrath, H. Schranzhofer, C. Hochenauer, Validation of dynamic building energy simulation tools based on a real Test-Box with thermally activated building systems (TABS): submitted to Energy Build. (2016).

DOI: 10.1016/j.enbuild.2018.03.025

Google Scholar