[1]
O. Ashden (2014). Low-Energy Buildings. Retrieved from http://www.ashden.org/low-energy-buildings, accessed on 04/04/17.
Google Scholar
[2]
UNEP (2009). Sustainable Building Climate Change: Summary for decision Makers.
Google Scholar
[3]
L. Peres-Lombard, J. Ortis ,C. Pout (2008): A review on buildings energy consumption information. Journal of Energy and Buildings. Elsevier, Vol. 40 Issue 3, 394-398.
DOI: 10.1016/j.enbuild.2007.03.007
Google Scholar
[4]
B. Tofield (2012). Delivering a Low-Energy Buildings: Making Quality Common Place. Report of Build with Care, European Development, UK.
Google Scholar
[5]
A. Batagarawa (2013). Assessing the thermal performance of phase change materials in Composite hot dry climates: An examination of office buildings in Abuja-Nigeria. PhD Thesis, Newcastle University, Newcastle, United Kingdom.
Google Scholar
[6]
A.A. Balogun, T.E. Morakinyo, O.B. Adegun (2014). Effect of tree shade on energy demand of two similar buildings. Energy and Building, 81, 305-315.
DOI: 10.1016/j.enbuild.2014.05.046
Google Scholar
[7]
E. G. McPherson, R. A. Rowntree (1993). Energy conservation potential of urban tree planting. Journal of Arboriculture, 19, 321-321.
DOI: 10.48044/jauf.1993.051
Google Scholar
[8]
H. Akbari (2002). Shade trees reduce building energy use and CO2 emissions from power plants. Environmental Pollution Volume 116, (1) S119–S126.
DOI: 10.1016/s0269-7491(01)00264-0
Google Scholar
[9]
S. Stern (2011). How do trees save energy retrieved from http://www.deeproot.com/blog/ blogentries/how-do-trees-save-energy. Accessed on 20/05/17.
Google Scholar
[10]
Landscape for life (2017) Use vegetation to increase energy efficiency retrieved from http://landscapeforlife.org/plants/use-vegetation-to-increase-energy-efficiency/. Accessed on 19/05/17.
Google Scholar
[11]
M. A. Hassan, M. R. Shaalan, K. M. El-Shazly (2004) Effects of Window Size and Location and Wind Direction on Thermal Comfort with Single-Sided Natural Ventilation World Renewabl Energy Congress Viii (Wrec 2004). P 1-6.
Google Scholar
[12]
H. Akbari, M. Pomerantz, H. Taha (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar energy, 70(3), 295-310.
DOI: 10.1016/s0038-092x(00)00089-x
Google Scholar
[13]
S.A. Ganiyu (2016). Assessment of thermal comfort level of some selected lecture theatres in Federal University of Technology, Akure. In Ebohon, O.J, Ayeni, D.A, Egbu, C.O and Omole, F.K. Procs of International Joint Conference on 21st Century Human Habitat, Issues, sustainability and Development. 21-24 March, 201, Akure, Nigeria 315-325.
Google Scholar
[14]
G. Perez, J. Coma, I. Martorell, L.F. Cabeza (2014). Vertical Greenery Systems (VGS) for Energy Saving in Buildings: A Review. Renewable and Sustainable Energy Reviews, Vol 39, 139 165.
DOI: 10.1016/j.rser.2014.07.055
Google Scholar
[15]
D.E. Pataki, M.M. Carreiro, J. Cherrier, N.E. Grulke, V. Jennings, S.Pincetl, W.C. Zipperer, (2011). Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Frontiers in Ecology and the Environment, 9(1), 27-36.
DOI: 10.1890/090220
Google Scholar
[16]
B. Raji, M.J. Tenpierik, A. van den Dobbelsteen (2015). The impact of greening systems on building energy performance: A literature review. Renewable and Sustainable Energy Reviews, 45, 610-623.
DOI: 10.1016/j.rser.2015.02.011
Google Scholar
[17]
Environmental Protection Agency (EPA) (2017). Using Trees and Vegetation to Reduce Heat Islands. www.epa.gov. Accessed on 20/05/17.
Google Scholar
[18]
D.J. Nowak, N. Appleton, A. Ellis, E. Greenfield (2017). Residential Building Energy Conservation and avoided power plant emissions by urban and community trees in the United States. Urban Forestry and Urban Greening, Vol 21, 155-165.
DOI: 10.1016/j.ufug.2016.12.004
Google Scholar
[19]
Z.H. Wang, X. Zhao, J.Yang, J. Song (2016). Cooling and energy saving potentials of shade trees and urban lawns in a desert city. Applied Energy, 161, 437-444.
DOI: 10.1016/j.apenergy.2015.10.047
Google Scholar
[20]
A. A. Millward, M. Torchia, A.E. Laursen, L.D. Rothman (2014). Vegetation placement for Summer Built Surface Temperature Moderation in an Urban Microclimate. Environmental Management, 53(6), 1043-1057.
DOI: 10.1007/s00267-014-0260-8
Google Scholar
[21]
B.B. Lin, K.J. Gaston, R.A. Fuller, D.Wu, R.Bush D.F. Shanahan (2017). How Green is your Garden? Urban form and Socio-Demographic Factors, Influence Yard Vegetation, Visitation and Ecosystem Service Benefits. Landscape and Urban Planning Vol 157, 239-246.
DOI: 10.1016/j.landurbplan.2016.07.007
Google Scholar
[22]
D.T.C. Cox, D.F. Shanahan, H.I. Hudson, R.A. Fuller, K. Anderson, S.Hancock, K.J. Gaston, (2017). Doses of Nearby Nature Simultaneously Associated with Multiple Health Benefits. International Journal of Public Health. Vol 14, 2. 172-181.
DOI: 10.3390/ijerph14020172
Google Scholar
[23]
World Health Organisation (2016) Urban Population Growth, Global Health Observatory Data. www.who-int/gho/urban_health/situation_trends/urban_population_growth_text/en.
Google Scholar
[24]
M.Sala, G. Alcamo, L.C. Nelli (2017) Energy- Saving Solutions for Five Hospitals in Europe Mediterranean Green Buildings and Renewable Energy. 1-17.
DOI: 10.1007/978-3-319-30746-6_1
Google Scholar
[25]
S.Bells, K.Jones, A. Mclntosh, L.Malki-Epsshtein, Z.Yao, (2017) Green Infrastructure for London: A Review of the Evidence. Journal of Natural Environment Research Council. A public engagement pilot project.
Google Scholar
[26]
S. Janhäll, (2015). Review on urban vegetation and particle air pollution–Deposition and dispersion. Atmospheric Environment, 105, 130-137.
DOI: 10.1016/j.atmosenv.2015.01.052
Google Scholar
[27]
G.K. Oral; A.K. Yener, N.T. Bayazit (2004). Building Envelope Design with the Objective to Ensure Thermal, Visual and Acoustic Comfort Conditions. Build Environ. 39(3):281–7.
DOI: 10.1016/s0360-1323(03)00141-0
Google Scholar
[28]
K.C. Parsons (2000). Environmental ergonomics: A review of principles, methods and models. Applied Ergon, 31: 581-594.
DOI: 10.1016/s0003-6870(00)00044-2
Google Scholar
[29]
H. Son, H.L. Rosario M.M. Rahman (2008). Thermal Comfort Enhancement by using a Ceiling Fan. Applied Thermal Eng., 29: 1648-1656.
DOI: 10.1016/j.applthermaleng.2008.07.015
Google Scholar
[30]
K.W. Shek W.T. Chan (2008). Combined Comfort Model of Thermal Comfort and Air Quality on Buses in Hong Kong. Sci. Total Environ. 389: 277-282.
DOI: 10.1016/j.scitotenv.2007.08.063
Google Scholar
[31]
P.O. Fanger (1970). Thermal Comfort. Danish Technical Press, Copenhagen, ISBN: 0-07 019915-9. 21-23.
Google Scholar
[32]
M.J. Holmes , J.N. Hacker (2007). Climate Change, Thermal Comfort and Energy: Meeting the Design Challenges of the 21st Century. Energy Build. 39: 802-814.
DOI: 10.1016/j.enbuild.2007.02.009
Google Scholar
[33]
B. Givoni, (1998). Climate Considerations in Building and Urban Design. Van Nostrand Reinhold, New York.
Google Scholar
[34]
J.A. Voogt, T.R. Oke (2003). Thermal Remote Sensing of Urban Climates. Remote Sens Environ, 86: 374-384.
DOI: 10.1016/s0034-4257(03)00079-8
Google Scholar
[35]
S. Bretz ,H. Akbari (1997). Long-Term Performance of High Albedo Roof Coatings. Energy and Buildings 25, 159–167.
DOI: 10.1016/s0378-7788(96)01005-5
Google Scholar
[36]
H. Taha, H. Akbari, A. Rosenfeld, J. Huang (1988). Residential Cooling Loads and the Urban Heat Island – The Effects of Albedo, Building and Environment, 23, (4), 271-283.
DOI: 10.1016/0360-1323(88)90033-9
Google Scholar
[37]
G. Bonan (1997). Effect of Land Use on the Climate of the United State. Climate Change. 37:449-486.
Google Scholar