Communication Analysis of Hardware-in-the-Loop Test Method for Heat Pumps and Chillers

Article Preview

Abstract:

There are many modelling and simulation methods and techniques, which may be used for prediction or reproduction of heat pumps and chillers behaviour. The hardware-in-the-loop method (HIL) is a technique developed to test a system and its elements working real-time to validate simulated values and to determine the actual performance of heating and cooling capability and performance of the whole system under specific conditions. The HIL can also serve as an intermediate step before testing a system in its actual environment providing opportunity to change boundary conditions or use different control mechanisms. This paper deals with the analysis complexity and possible inaccuracies due to communication difficulties between the test rig and simulation software and due to the test rig hydraulic character. We test and compare several simulation and communication variants such as different time step or different steady-state detection methods in order to achieve the most realistic behaviour of the heat pump and the whole system. The main result of this research is enhancement of communication and simulation accuracy and speedup of the whole process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

587-596

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Weyr and O. Šikula. Internal Microclimate and Heat Accumulation Assessment in Industrial Building. In: Indoor Climate of Buildings, 2016. pp.179-187.

Google Scholar

[2] W. Streicher, H. Schnitzer, M. Titz, F. Tazber, R. Heimrath, I. Wetz, S. Hausberger, R. Haas, G. Kalt, A. Damm, K. Steininger and S. Oblasser. Energieautarkie Für Österreich 2050 Innsbruck: , December, 2010. Available via: https://www.klimafonds.gv.at/assets/Uploads/Studien/Energieautarkie205012pt20110308Final.pdf (last accessed: May 2017).

Google Scholar

[3] M. Wietschel. Energietechnologien 2050 - Schwerpunkte Für Forschung Und Entwicklung. Stuttgart: Fraunhofer-Verl, 2010 ISBN 3839601029.

Google Scholar

[4] P. Byrne, J. Miriel and Y. Lénat. Modelling and Simulation of a Heat Pump for Simultaneous Heating and Cooling. Building Simulation, Sep, 2012, vol. 5, no. 3. pp.219-232 CrossRef. ISSN 1996-3599. DOI 10.1007/s12273-012-0089-0.

DOI: 10.1007/s12273-012-0089-0

Google Scholar

[5] W. Stutterecker, T. Schoberer and G. Steindl. Development of a Hardware-in-the-Loop Test Method for Heat Pumps and Chillers. In: Proceedings of REHVA Annual Conference 2015, (2015).

DOI: 10.7250/rehvaconf.2015.017

Google Scholar

[6] S. Nabi, M. Balike, J. Allen and K. Rzemien. An Overview of Hardware-in-the-Loop Testing Systems at Visteon. Mar 8, (2004).

DOI: 10.4271/2004-01-1240

Google Scholar

[7] J. Vejlupek, R. Grepl, P. Krejci, F. Lesak and M. Karel. Hardware-in-the-Loop Simulation for Automotive Parking Assistant Control Units. In Proceedings of the 16th International Conference on Mechatronics – Mechatronika 2014. Brno: Brno University of technology, 2014, 2014. s. 325-330. ISBN: 978-80-214-4817-9.

DOI: 10.1109/mechatronika.2014.7018279

Google Scholar

[8] M. Anderson, M. Buehner, P. Young, D. Hittle, C. Anderson, J. Tu and D. Hodgson. An Experimental System for Advanced Heating, Ventilating and Air Conditioning (HVAC) Control. Energy & Buildings, 2007, vol. 39, no. 2. pp.136-147. Available from: http://www.sciencedirect.com/science/article/pii/S0378778806001587 CrossRef. ISSN 0378-7788. DOI 10.1016/j.enbuild.2006.05.003.

DOI: 10.1016/j.enbuild.2006.05.003

Google Scholar

[9] R. Lahrech, P. Gruber, P. Riederer, P. Tessier and J.C. Visier. Development of a Testing Method for Control HVAC Systems by Emulation. Energy & Buildings, 2002, vol. 34, no. 9. pp.909-916. Available from: http://www.sciencedirect.com/science/article/pii/S0378778802000671 CrossRef. ISSN 0378-7788. DOI 10.1016/S0378-7788(02)00067-1.

DOI: 10.1016/s0378-7788(02)00067-1

Google Scholar

[10] P. Haves, A.L. Dexter, D.R. Jorgensen, K.-V. King and G. Geng. Use of a Building Emulator to Develop Techniques for Improved Commissioning and Control of HVAC Systems. ASHRAE Transactions, 1991, vol. 97, no. Pt 1.

Google Scholar

[11] P. Riederer, V. Partenay and O. Raguideau. Dynamic Test Method for the Determination of the Global Seasonal Performance Factor of Heat Pumps used for Heating, Cooling and Domestic Hot Water Preparation. In: Eleventh International IBPSA Conference, Glasgow, UK, (2009).

Google Scholar

[12] P. Da Silva and G. Knabe. LabHouse: System Simulation and Emulation within Boiler Development. Building Services Engineering Research and Technology, 2003, vol. 24, no. 4. pp.281-287.

DOI: 10.1191/0143624403bt078oa

Google Scholar

[13] R. Dott, M.Y. Haller, J. Ruschenburg, F. Ochs and J. Bony. The Reference Framework for System Simulations. International Energy Agency. , 2013. Available via: http://task44.iea-shc.org/data/sites/1/publications/T44A38_Rep_C1_B_ReferenceBuildingDescription_Final_Revised_130906.pdf (last accessed: May 2017).

DOI: 10.18777/ieashc-task44-2013-0006

Google Scholar

[14] A. De La Cruz, P. Riviere, D. Marchi, O. Cauret and A. Milu Hardware in the Loop Test Bench using Modelica: A Platform to Test and Improve the Control of Heating Systems. Applied Energy, Feb, 2017, vol. 188. pp.107-120 CrossRef. ISSN 0306-2619. DOI 10.1016/j.apenergy.2016.11.092.

DOI: 10.1016/j.apenergy.2016.11.092

Google Scholar

[15] C. Elliott, V. Vijayakumar, W. Zink and R. Hansen. National Instruments LabVIEW: A Programming Environment for Laboratory Automation and Measurement. JALA: Journal of the Association for Laboratory Automation, 2007, vol. 12, no. 1. pp.17-24.

DOI: 10.1016/j.jala.2006.07.012

Google Scholar

[16] T. SEL and T. CSTB. Trnsys 16: A Transient System Simulation Program. University of Wisconsin, Madison, USA, (2004).

Google Scholar

[17] TRNSYS: Transient System Simulation Tool. Interface - Features, 2017. [Accessed 16.04.2017]. Available from:http://www.trnsys.com/features.

Google Scholar

[18] TRNSYS: Transient System Simulation Tool. Standart Component Library Overview, 2017. [Accessed 16.04.2017]. Available from: www.trnsys.com/assets/docs/03-ComponentLibrary Overview.pdf.

Google Scholar

[19] B. Delcroix, M. Kummert, A. Daoud and M. Hiller. Conduction Transfer Functions in TRNSYS Multizone Building Model: Current Implementation, Limitations and Possible Improvements. IBPSA-USA Journal, 2012, vol. 5, no. 1. pp.219-226.

DOI: 10.26868/25222708.2013.1192

Google Scholar

[20] T. Schoberer, J. Weyr, G. Steindl, G. Gortler and W.Stutterecker. Comparison of the energy performance of a heat pump under various conditions by using a hardware-in-the-loop (HIL) test method. In: Envibuild (2017).

DOI: 10.4028/www.scientific.net/amm.887.622

Google Scholar