Direct Digital Manufacturing of Nanocomposites

Article Preview

Abstract:

Additive manufacturing has surged in popularity as a route to designing and preparing functional parts. Depending on the parts function, certain attributes such as high mechanical performances may be desired. We develop a route for improving the mechanical properties of polymer devices, fabricated through additive manufacturing by combining electrospinning and stereo-lithography into one automated process. This process utilises the impressive mechanical properties of carbon nanotubes by encapsulating and aligning them in electrospun fibres. Composite fibres will be incorporated into polymer resins prepared with stereo-lithography, thereby providing resins that benefit from the composite fibres properties, enhancing their overall mechanical properties.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] K.V. Wong , A. Hernandez, A Review of Additive Manufacturing, ISRN Mechanical Engineering 2012 (2012) 1-10.

Google Scholar

[2] G. Mittal, V. Dhand, K.Y. Rhee, S.-J. Park , W.R. Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, Journal of Industrial and Engineering Chemistry 21 (2015) 11-25.

DOI: 10.1016/j.jiec.2014.03.022

Google Scholar

[3] M. Etcheverry , S.E. Barbosa, Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement, Materials (Basel) 5 (2012) 1084-1113.

DOI: 10.3390/ma5061084

Google Scholar

[4] W.-I. Park, M. Kang, H.-S. Kim , H.-J. Jin, Electrospinning of Poly(ethylene oxide) with Bacterial Cellulose Whiskers, Macromolecular Symposia 249-250 (2007) 289-294.

DOI: 10.1002/masy.200750347

Google Scholar

[5] K. Iakoubovskii, Techniques of aligning carbon nanotubes, Open Physics 7 (2009).

Google Scholar

[6] G.R. Mitchell, Electrospinning: principles, practice and possibilities, ed., (2015).

Google Scholar

[7] D.K. Shinde , A.D. Kelkar, Effect of TEOS electrospun nanofiber modified resin on interlaminar shear strength of glass fiber/epoxy composite, World Acad. Sci. Eng. Technol. Int. J. Mater. Metall. Eng 1 (2014).

Google Scholar

[8] M. Nazhipkyzy, S.D. Mohan, F.J. Davis , G.R. Mitchell, Carbon nanotubes in electrospun polyethylene oxide nanofibres: A potential route to conducting nanofibres, Journal of Physics: Conference Series 646 (2015) 012007.

DOI: 10.1088/1742-6596/646/1/012007

Google Scholar

[9] P. Bartolo , G. Mitchell, Stereo-thermal-lithography: a new principle for rapid prototyping, Rapid Prototyping Journal 9 (2003) 150-156.

DOI: 10.1108/13552540310477454

Google Scholar

[10] C. Sun, N. Fang, D. Wu , X. Zhang, Projection micro-stereolithography using digital micro-mirror dynamic mask, Sensors and Actuators A: Physical 121 (2005) 113-120.

DOI: 10.1016/j.sna.2004.12.011

Google Scholar

[11] H. Liao, Y. Wu, M. Wu, X. Zhan , H. Liu, Aligned electrospun cellulose fibers reinforced epoxy resin composite films with high visible light transmittance, Cellulose 19 (2012) 111-119.

DOI: 10.1007/s10570-011-9604-1

Google Scholar

[12] H. Fong, Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins, Polymer 45 (2004) 2427-2432.

DOI: 10.1016/j.polymer.2004.01.067

Google Scholar

[13] T. Guo, Z. Zhou, H. Guo, G. Xiao, X. Tang , M. Peng, Toughening of epoxy resin with functionalized core‐sheath structured PAN/SBS electrospun fibers, Journal of Applied Polymer Science 131 (2014).

DOI: 10.1002/app.41119

Google Scholar

[14] C. Miao, W.Y. Hamad, Cellulose reinforced polymer composites and nanocomposites: a critical review, Cellulose 20 (2013) 2221-2262.

DOI: 10.1007/s10570-013-0007-3

Google Scholar