A Computational Study on Structural and Electronic Properties of 1-(4-Chlorophenyl)-2-{[5-(4-Chlorophenyl)-1,2,3-Oxadiazol-2-Yl]Sulfanyl}Ethanone

Article Preview

Abstract:

In this paper, a first principle Density Functional Theory (DFT) method was conducted to study the geometric and electronic structures of 1-(4-chlorophenyl)-2-{[5-(4-chlorophenyl) -1,3,4-oxadiazol-2-yl] sulfanyl} ethanone, C16H10Cl2N2O2S. Using B3LYP level of theory with four basis sets of 6-31G**, 6-31++G**, 6-311G**, and 6-311++G**, the equilibrium structure of the title molecule was used to determine the total energies, Frontier molecular orbital’s energies, Mulliken atomic charges, and others. The computed findings present that four total energies obtained are close to each other, with the corresponding values of-59716.06 eV, -59709.42 eV, -59708.56 eV, and-59716.51 eV, respectively for B3LYP/6-31G**, B3LYP/6-31++G**, B3LYP/6-311G**, and B3LYP/6-311++G** methods. The calculated HOMO-LUMO energy gaps were predicted in the range of 4.001 eV - 4.089 eV. In this study, the atomic charge values of molecular system were also determined using Mulliken Population Analysis (MPA) approach. For DFT/B3LYP/6-311G** level of calculation, the computed results show that the atom of C8 accommodates the highest negative charge in the title molecular system. All the oxygen, nitrogen, and chloride atoms are having negative charges, whereas all the hydrogen atoms are having positive charges. In addition, the dipole moment value was also determined to be 1.4758 Debye by employing DFT/B3LYP/6-311G** level of theory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-7

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Husain, M. Ajmal, Synthesis of novel 1,3,4-oxadiazole derivatives and their biological properties, Acta Pharm. 59 (2009) 223-233.

Google Scholar

[2] S. Kumar, Synthesis of some 2-amino-5-substituted-1,3,4-oxadiazole derivatives in the acetic acid, E-J. Chem. 8 (2011) S448-S454.

DOI: 10.1155/2011/757381

Google Scholar

[3] M. Malhotra, M. Sanduja, A. Samad and A. Deep, A. New oxadiazole derivatives of isonicotinohydrazide in the search for antimicrobial agents: Synthesis and in vitro evaluation, J. Serb. Chem. Soc. 77(1) (2012) 9-16.

DOI: 10.2298/jsc110123155m

Google Scholar

[4] S. Bala, S. Kamboj, V. Saini, and D. N. Prasad, 1,3,4-Oxadiazole Derivatives: Synthesis, Characterization, Antimicrobial Potential, and Computational Studies, BioMed Research International 2014 (2014) 172791-1-18.

DOI: 10.1155/2014/172791

Google Scholar

[5] K. V. Vani, G. Ramesh, C. V. Rao, Synthesis of new triazole and oxadiazole derivatives of quinazolin-4(3H)-one and their antimicrobial activity, J. Heterocyclic Chem. 53 (2016) 719-726.

DOI: 10.1002/jhet.2353

Google Scholar

[6] Y. Luo, Z. J. Liu, G. Chen, J. Shi, J. R. Li, H. L. Zhu, 1,3,4-. Oxadiazole derivatives as potential antitumor agents: Discovery, optimization and biological activity valuation. MedChemComm 7(2) (2016) 263-271.

DOI: 10.1039/c5md00371g

Google Scholar

[7] R. Kumar, S. Hussain, K. M. Khan, S. Perveen, S. Yousuf, Crystal structure and Hirshfeld surface analysis of 1-(4-chloro­phen­yl)-2-{[5-(4-chloro­phen­yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}ethanone, ActaCryst. E. 73 (2017) 524-527.

Google Scholar

[8] M. Soleiman-Beigi, R. Aryan, M. Yousofizadeh, and Sh. Khosravi, A combined synthetic and DFT study on the catalyst-free and solvent-assisted synthesis of 1,3,4-oxadiazole-2-thiol derivatives, J. Chem. (2013) 476358-1-6.

DOI: 10.1155/2013/476358

Google Scholar

[9] H. Wang, F. Q. Bai, X. Jia, D. Cao, R. M. Kumar, J. L. Brédas, S. Qu, B. Bai, H. X. Zhang and M. Li, Theoretical study on molecular packing and electronic structure of bi-1,3,4-oxadiazole derivatives, RSC Adv. 4 (2014) 51942-51949.

DOI: 10.1039/c4ra06405d

Google Scholar

[10] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, (2016).

Google Scholar