[1]
International Energy Agency. Combined heat and power: evaluating the benefits of greater global investment. Paris, France; (2008).
Google Scholar
[2]
Environmental Protection Agency. Combined heat and power: a clean energy solution; (2012).
Google Scholar
[3]
H. Cho, A. D. Smith, P. Mago, Combined cooling, heating and power: A review of performance improvement and optimization, Appl. Energy, 136 (2014) 168-185.
DOI: 10.1016/j.apenergy.2014.08.107
Google Scholar
[4]
W. Gu, Z. Wu, R. Bo, W. Liu, G. Zhou, W. Chen, Z. Wu, Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review, Electrical Power and Energy Syst. 54 (2014) 26-37.
DOI: 10.1016/j.ijepes.2013.06.028
Google Scholar
[5]
P. J. Mago, N. Fumo, L. M. Chamra, Performance analysis of CCHP and CHP systems operating following the thermal and electric load, Int. J. of Energy Res. 33(9) (2009) 852–864.
DOI: 10.1002/er.1526
Google Scholar
[6]
A. Moran, P. J. Mago, L. M. Chmra, Thermo economic modeling of micro-CHP for small commercial applications, Int. J. Energy Res. 32(9) (2008) 808-823.
DOI: 10.1002/er.1395
Google Scholar
[7]
M. Liu, Y. Shi, F. Fang, A new operation strategy for CCHP systems with hybrid chillers, Appl. Energy, 95 (2012) 164-173.
DOI: 10.1016/j.apenergy.2012.02.035
Google Scholar
[8]
C. Y. Zheng, J. Y. Wu, X. Q. Zhai, A novel operation strategy for CCHP systems based on minimum distance. Appl. Energy, 128 (2014) 325-335.
DOI: 10.1016/j.apenergy.2014.04.084
Google Scholar
[9]
J. J. Wang, J. Sui, H. G. Jin, An improved operation strategy of combined cooling heating and power system following electrical load, Eergy, 85 (2015) 654-666.
DOI: 10.1016/j.energy.2015.04.003
Google Scholar
[10]
T. Guo, M. I. Henwood, M. V. Ooijen, An Algorithm for Combined Heat and Power Economic Dispatch, IEEE Trans. on Power Syst. 11(4) (1996) 1778-1784.
DOI: 10.1109/59.544642
Google Scholar
[11]
Y.H. Song, C.S. Chou, T.J. Stonham, Combined heat and power economic dispatch by improved ant colony search algorithm, Electric Power Syst. Res. 52(2) (1999) 115-121.
DOI: 10.1016/s0378-7796(99)00011-5
Google Scholar
[12]
A. Rong, R. Lahdelma, An efficient envelope-based Branch and Bound algorithm for non-convex combined heat and power production planning, Eur. J. of Oper. Res. 183(1) (2007) 412-431.
DOI: 10.1016/j.ejor.2006.09.072
Google Scholar
[13]
Y. Zhongyuan, Z. Bin,Optimal Operation Stratetegies and their determining conditions for CCHP Systems with two cooling ways, Automation of Electric Power Systems 2018, 42(5) 18-24.
Google Scholar
[14]
Y. Li, B. Zou, F. Zhu, J. Fu, An Optimal Planning method for CCHP Systems Based on Operation Simulation, 2018 IEEE Int. Conf. on Smart Energy Grid Eng. (2018).
DOI: 10.1109/sege.2018.8499483
Google Scholar