Numerical Study of a Small Droplet Movement in a Microchannel under Heat Source

Article Preview

Abstract:

In this study, the numerical computation is used to investigate the transient movement of a water droplet in a microchannel. For tracking the evolution of the free interface between two immiscible fluids, we employed the finite element method with the two-phase level set technique to solve the Navier-Stokes equations coupled with the energy equation. Both the upper wall and the bottom wall of the microchannel are set to be an ambient temperature. 40mW heat source is placed at the distance of 1 mm from the initial position of a water droplet. When the heat source is turned on, a pair of asymmetric thermocapillary convection vortices is formed inside the droplet and the thermocapillary on the receding side is smaller than that on the advancing side. The temperature gradient inside the droplet increases quickly at the initial times and then decreases versus time. Therefore, the actuation velocity of the water droplet first increases significantly, and then decreases continuously. The dynamic contact angle is strongly affected by the oil flow motion and the net thermocapillary momentum inside the droplet. The advancing contact angle is always larger than the receding contact angle during actuation process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-111

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Haeberle and R. Zengerle, Microfluidic platforms for lab-on-a-chip applications, Lab Chip 7 (2007) 1094-1110.

DOI: 10.1039/b706364b

Google Scholar

[2] F. Yu, L. Ai, W. Dai, N. Rozengurt, H. Yu, T. K. Hsiai, MEMS thermal sensors to detect changes in heat transfer in the pre-atherosclerotic regions of fat-fed New Zealand white rabbits, Ann Biomed Eng. 39 (2012) 1736-1744.

DOI: 10.1007/s10439-011-0283-8

Google Scholar

[3] L. Wang, K. Sun, X. Hu, G. Li, Q. Jin, J. Zhao, A centrifugal microfluidic device for screening protein crystallization conditions by vapor diffusion, Sensors and Actuators B: Chemical 219 (2015) 105-111.

DOI: 10.1016/j.snb.2015.04.105

Google Scholar

[4] N. T. Nguyen and S.T. Wereley, Fundamentals and applications of microfluidics, Artech House, Boston, (2006).

Google Scholar

[5] N. T. Nguyen, S. Lassemono, F. A. Chollet, Optical detection for droplet size control in microfluidic droplet-based analysis systems, Sensors and Actuators B 117 (2006) 431-436.

DOI: 10.1016/j.snb.2005.12.010

Google Scholar

[6] F. Brochard, Motions of droplets on solid surfaces induced by chemical or thermal gradients, Langmuir 5 (1989) 432-438.

DOI: 10.1021/la00086a025

Google Scholar

[7] J. Z. Chen, S. M. Troian, A. A. Darhuber, S. Wagner, Effect of contact angle hysteresis on thermocapillary droplet actuation, J. Appl. Phys. 97 (2005) 014906.

DOI: 10.1063/1.1819979

Google Scholar

[8] M. L. Ford, A. Nadim, Thermocapillary migration of an attached drop on a solid surface, Phys. Fluids 6 (1994) 3183-3185.

DOI: 10.1063/1.868096

Google Scholar

[9] T.-L. Le, J.-C. Chen, B.-C. Shen, F.-S. Hwu and H.-B. Nguyen, Numerical investigation of the thermocapillary actuation behavior of a droplet in a microchannel, Int. J. Heat Mass Transfer 83 (2015) 721-730.

DOI: 10.1016/j.ijheatmasstransfer.2014.12.056

Google Scholar

[10] T.-L. Le, J.-C. Chen, F.-S. Hwu and H.-B. Nguyen, Numerical study of the migration of a silicone plug inside a capillary tube subjected to an unsteady wall temperature gradient, Int. J. Heat Mass Transfer 97 (2016) 439-449.

DOI: 10.1016/j.ijheatmasstransfer.2015.11.098

Google Scholar

[11] N. T. Nguyen, X. Y. Huang, Thermocapillary effect of a liquid plug in transient temperature fields, J. Appl. Phys. 44 (2005) 1139-1142.

DOI: 10.1143/jjap.44.1139

Google Scholar

[12] H. Liu, A. J. Valocchi, Y. Zhang, Q. Kang, Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel, J. Comput. Phys. 256 (2014) 334-356.

DOI: 10.1016/j.jcp.2013.08.054

Google Scholar

[13] T.-L. Le, J.-C. Chen, and H.-B. Nguyen, Numerical study of the thermocapillary droplet migration in a microchannel under a blocking effect from the heated wall, Appl. Thermal Eng. 122 (2017) 820-830.

DOI: 10.1016/j.applthermaleng.2017.04.073

Google Scholar

[14] M. R. S. Vincent, R. Wunenburger, J. P. Delville, Laser switching and sorting for high speed digital microfluidics, Applied Physics Letters 92 (2008) 154105.

DOI: 10.1063/1.2911913

Google Scholar

[15] H.-B.Nguyen and J.-C.Chen, A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface, Phys. Fluid 22 (2010) 062102.

DOI: 10.1063/1.3432848

Google Scholar

[16] H.-B.Nguyen and J.-C.Chen, Numerical study of a droplet migration induced by combined thermocapillary-bouyancy convection, Phys. Fluid 22 (2010) 122101.

DOI: 10.1063/1.3524822

Google Scholar

[17] H.-B.Nguyen and J.-C.Chen, Effect of slippage on the thermocapillary migration of a small droplet, Biomicrofluidics 6 (2012) 012809.

DOI: 10.1063/1.3644382

Google Scholar

[18] E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225-246.

DOI: 10.1016/j.jcp.2005.04.007

Google Scholar

[19] E. Olsson, G. Kreiss, and S. Zahedi, A conservative level set method for two phase flow II, J. Comput. Phys. 225 (2007) 785-807.

DOI: 10.1016/j.jcp.2006.12.027

Google Scholar

[20] J. U. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comp. Phys. 100 (1991) 335-354.

DOI: 10.1016/0021-9991(92)90240-y

Google Scholar

[21] J.-C. Chen, C.-W. Kuo, G. P. Neitzel, Numerical simulation of thermocapillary nonwetting, Int. J. Heat Mass Transfer 49 (2006) 4567-4576.

DOI: 10.1016/j.ijheatmasstransfer.2006.04.033

Google Scholar

[22] P. Tabeling, Investigating slippage, droplet breakup, and synthesizing microcapsules in microfluidic system, Phys. Fluids 22 (2010) 021302.

DOI: 10.1063/1.3323086

Google Scholar

[23] J. Koplik, J. R. Banavar, and J. F. Willemsen, Molecular dynamics of fluid flow at solid surfaces, Phys. Fluids A 1 (1989) 781-794.

DOI: 10.1063/1.857376

Google Scholar