Investigations on Mechanical Performance of Multi-Layered Microwave Processed HDPE/Sisal Composites for Automobile Applications

Article Preview

Abstract:

The present investigation is based on fabrication of sisal reinforced high density poly ethylene (HDPE) composites using a novel manufacturing route of microwave processing. Microwave processing was carried out in a multimode applicator at 2.45 GHz with single and multi-layered sisal fibre reinforcement. The comparison between single and multilayered sisal fibre reinforced composites were assessed in terms of tensile, flexural and impact strength. It was found that the multi-layered sisal fibre microwave processed composite has superior properties than single layered reinforced composite. The fractography of tensile fractured surfaces was assessed using electron microscopy. The microwave processed HDPE/sisal composites can be used as a dashboard material of an automobile.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-69

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.M. Wang, S.R. Zheng, Y.P. Zheng, Introduction to polymer matrix composites, Polym. Matrix Compos. Technol. (2011) 541–548.

Google Scholar

[2] S. Ali, P.K. Bajpai, I. Singh, A.K. Sharma, Curing of natural fibre-reinforced thermoplastic composites using microwave energy, J. Reinf. Plast. Compos. 33 (2014) 993–999.

DOI: 10.1177/0731684414523326

Google Scholar

[3] Song, Research on mechanical properties of epoxy/glass fiber composites cured by microwave radiation, J. Reinf. Plast. Compos. 33 (2014) 1441–1451.

DOI: 10.1177/0731684414524031

Google Scholar

[4] T. Paramasivam, A.P.J. Abdul Kalam,On the study of indigenous natural-fibre composites, Fibre Sci. Technol. 7 (1974) 85–88.

DOI: 10.1016/0015-0568(74)90020-7

Google Scholar

[5] N.A. Ibrahim, W. Md Zin Wan Yunus, M. Othman, K. Abdan, K.A. Hadithon,) (PLA)-reinforced kenaf bast fiber composites:J. Reinf. Plast. Compos. 29 (2010) 1099–1111.

DOI: 10.1177/0731684409344651

Google Scholar

[6] J. Yanagimoto, K. Ikeuchi, Sheet forming process of carbon fiber reinforced plastics for lightweight parts, CIRP Ann. - Manuf. Technol. 61 (2012) 247–250.

DOI: 10.1016/j.cirp.2012.03.129

Google Scholar

[7] S. Singh, D. Gupta, V. Jain, A.K. Sharma, Microwave processing of materials and applications in manufacturing industries: A Review, Mater. Manuf. Process. 30 (2015) 1–29.

Google Scholar

[8] N. Defoirdt, S. Biswas, L. De Vriese, L. Quan, N. Tran, J. Van Acker, Composites : Part A Assessment of the tensile properties of coir , bamboo and jute fibre, Compos. Part A. 41 (2010) 588–595.

DOI: 10.1016/j.compositesa.2010.01.005

Google Scholar

[9] N. Ayrilmis,S.Jarusombuti,V.Fueangvivat, P.Bauchongkol, R.H. White, Coir fiber reinforced polypropylene composite panel for automotive interior applications, Fibers Polym. 12 (2011) 919–926.

DOI: 10.1007/s12221-011-0919-1

Google Scholar

[10] S. Jayabal, S. Sathiyamurthy, K.T. Loganathan, S. Kalyanasundaram, Effect of soaking time and concentration of NaOH solution on mechanical properties of coir-polyester composites, Bull. Mater. Sci. 35 (2012) 567–574.

DOI: 10.1007/s12034-012-0334-2

Google Scholar

[11] F.Z. Arrakhiz, M. El Achaby, A.C. Kakou, S. Vaudreuil, K. Benmoussa, R. Bouhfid, O. Fassi-Fehri, A. Qaiss, Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: Impact of chemical treatments, Mater. Des. 37 (2012) 379–383.

DOI: 10.1016/j.matdes.2012.01.020

Google Scholar

[12] F.Z. Arrakhiz, M. Malha, R. Bouhfid, K. Benmoussa, A. Qaiss, Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene, Compos. Part B Eng. 47 (2013) 35–41.

DOI: 10.1016/j.compositesb.2012.10.046

Google Scholar

[13] A. Mitra, P. Sharma, A.S. Jatav, Comparison On Mechanical Properties Of Microwave Cured Polypropylene Composites Reinforced With Hemp With Compression Moulding Technique ., Imp. J. Interdiscip. Res. 2 (2016) 1139–1146.

Google Scholar

[14] M. Technologies, S. Republic, Automotive Materials, Inst. Prod. Technol. Sloval Univ. Technol. Bratislava. (2010) 27–33.

Google Scholar

[15] Information on https://pslc.ws/macrog/work/dash.htm.

Google Scholar

[16] T.J. George, N. Jacob, F.K. Francis, M. Joseph, Investigation on Mechanical Properties of Various Microwave Cured Natural Fibre Reinforced Polymer Composites, Int. J. Eng. Res. Technol. 2 (2013) 2027–(2032).

Google Scholar

[17] J. Vácha, M. Borůvka, Mechanical Properties of Acrylonitrile Butadiene Styrene Thermoplastic Polymer Matrix With Carbon Nanotubes, Nanocon. (2015) 1–6.

Google Scholar

[18] Information on https://www.creativemechanisms.com/blog.

Google Scholar

[19] M. singh, S.zafar, Development and mechanical characterisation of microwave cured thermoplastic based natural fibre reinforced composites, Journal of Thermoplastic Composite Materials.(2018).

DOI: 10.1177/0892705718799832

Google Scholar

[20] M. singh, S.zafar, Influence of microwave power on mechanical properties of microwave-cured polyethylene/coir composites, Journal of natural fibres.(2018).

DOI: 10.1080/15440478.2018.1534192

Google Scholar