Theoretical Investigations on Mechanical Stability and Electronic Structure of NbN under Pressures

Article Preview

Abstract:

The ground structure, elastic and electronic properties of several phases of NbN are determined based on ab initio total-energy calculations within the framework of density functional theory. Among the five crystallographic structures that have been investigated, the hexagonal phases have been found to be more stable than the cubic ones. The calculated equilibrium structural parameters are in good agreement with the available experimental results. The elastic constants of five structures in NbN are calculated, which are in consistent with the obtained theoretical and experimental data. The corresponding Debye temperature and elastic ansitropies are also obtained. The Debye temperature of NbN in various structures consistent with available experimental and theoretical data, in which the Debye temperature of δ-NbN is highest. The anisotropies of ZB-NbN, NaCl-NbN, CsCl-NbN gradually increases. For hexagonal structure, the anisotropies of ε-NbN are stronger than that of δ-NbN. The electronic structures of NbN under pressure are investigated. It is found that NbN have metallization and the hybridizations of atoms in NbN under pressure become stronger.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1264-1271

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. T. Matthias:Phys. Rev. Vol. 92 (1953),p.874

Google Scholar

[2] X. J. Chen, V.V. Struzhkin, S. Kung, H. Mao, R. J. Hemley and A. N. Christensen: Phys. Rev. B Vol. 70 (2004), p.014501

Google Scholar

[3] X. J. Chen, V. V. Struzhkin, Z. G Wu, R. E. Cohen, S. Kung, H. Mao, and R. J. Hemley, A. N.Christensen: Phys. Rev. B Vol. 72 (2005), p.094514

Google Scholar

[4] X. J. Chen, V. V. Struzhkin, Z. G Wu, M. Somayazulu, J. Qian, S.Kung, A. N. Christens, Y. Zhao, R. E. Cohen, H.K. Mao, and R. J. Hemley : Proc. Natl. Acad. Sci. U.S.A. Vol. 102 (2005), p.3198

DOI: 10.1073/pnas.0500174102

Google Scholar

[5] G. Oya and Y. Onodera: J. Appl. Phys. Vol. 47 (1976), p.2833

Google Scholar

[6] R. Sanjinés, M. Benkahoul, C. S. Sandu, P.E. Schmid and F. Lévy: Thin Solid Films Vol. 494 (2006), p.190

DOI: 10.1016/j.tsf.2005.07.185

Google Scholar

[7] P. Ojha, M. Aynyas and S. P. Sanyal: J. Phys. Chem. Solids. Vol. 68 (2007), p.148

Google Scholar

[8] Z. G.Wu, X. J. Chen, V. V. Struzhkin and R. E. Cohen : Phys. Rev. B Vol. 71 (2005), p.214103

Google Scholar

[9] X. G. Lu , M. Selleby and B.Sundman: Acta Materialia Vol. 55 (2007), p.1215

Google Scholar

[10] T. Amriou, B. Bouhafs, H. Aourag, B. Khelifa, S. Bresson and C. Mathieu: Physica B Vol. 325 (2003), p.46

DOI: 10.1016/s0921-4526(02)01429-1

Google Scholar

[11] C. Wang, M. Wen, Y.D. Su, L. Xu, C.Q. Qu, Y.J. Zhang, L.Qiao. S.S. Yu, W.T. Zheng and Q. Jiang: Solid.State. Commun. Vol.149 (2009), p.725

Google Scholar

[12] Z.H. Wang, X.Y. Kuang, X.F. Huang, P. Lu and A.J. Mao: Europhysics Lett. Vol. 92 (2010), p.56002

Google Scholar

[13] V. Milman, B. Winkler, J.A. White, C. J. Packard, M.C. Payne, E.V. Akhmatskaya, and R.H. Nobes: Int. J. Quantum Chem. Vol. 77 (2000), p.895

Google Scholar

[14] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892

Google Scholar

[15] J.P. Perdew, K. Burke and M. Ernzerhof: Phys . Rev . Lett. Vol. 77 (1996), p.3865

Google Scholar

[16] L. Fast, J.M. Wills, B. Johansson, and O. Eriksson: Phys. Rev. B Vol. 51 (1995), p.17431

Google Scholar

[17] O. L. Anderson: J. Phys. Chem. Solids Vol. 24 (1963), p.909

Google Scholar

[18] M.A. Auld, Acoustic Fields and Waves in Solids, Vol. I(Wiley, New York 1973).

Google Scholar

[19] J.P. Poirier and A.Tarantola: Phys. Earth Planet Int. Vol. 109 (1998), p.1

Google Scholar

[20] L.E. Toth, Transition Metal Carbides and Nitrides (Academic, New York 1971).

Google Scholar

[21] N. Schoenberg: Acta Chemica Scandinavica Vol. 8 (1954), p.208

Google Scholar

[22] A. Fontbonne and J.C. Gilles: Revue Internationale des Hautes Temperatures et des Refractaires Vol. 6 (1969), p.181

Google Scholar

[23] M. B. Kanoun, S. Goumri-Said, and M. Jaouen: Phys. Rev. B Vol. 76 (2007), p.134109

Google Scholar

[24] E. Soignard, P.F. McMillan, T.D. Chaplin, S.M. Farag, C.L. Bull, M.S. Somayazulu and K. Leinenweber: Phys. Rev. B Vol. 68 (2003), p.132101

Google Scholar

[25] R. Ahuja, O. Erikssen, J.M. Wills and B. Johansson: Phys. Rev. B Vol. 53 (1996), p.3072

Google Scholar

[26] L. A. Mancera, J. A. Rodríguez and N. Takeuchi: J. Phys.: Condens. Matter Vol. 15 (2003), p.2625

Google Scholar

[27] N. Takeuchi: Phys. Rev. B Vol. 65 (2002), p.045204

Google Scholar

[28] L. A. Salguero, L. Mancera, J. A. Rodríguez and N. Takeuchi: phys. stat. sol. (b) Vol. 243 (2006), p.1808

Google Scholar

[29] M. Born and K. Huang: Dynamical Theory of Crystal Lattices (Clarendon, Oxford 1956).

Google Scholar