Analysis of Tungsten-Alumina Nanocomposite Thin Films on SS304 Substrate

Article Preview

Abstract:

Higher solar absorptance and lower thermal emittance are the key factors for solar collectors. The use of thin films that are having mechanically resistant coatings are common practice in industries. The primary motivation of carrying this research work is to lower thermal emittance and maximize solar absorptance on SS304 substrate material. W-Al2O3 composite coatings are developed using magnetron sputtering process by considering the process parameters. The experimental plan is achieved based on Taguchi L9 orthogonal under various levels for deposition parameters. The tungsten and alumina thin films deposited using a co-sputtering were characterized using 410 - solar instrument for measuring solar absorptance and ET 100 Emissometer for measuring thermal emittance. The optimization for process parameters on thermal emittance and absorptance were carried out. It was found that for deposition parameters of DC power 750W, RF power 1050W and Argon gas flow rate of 250 sccm, absorptance of 0.758 with thermal emittance of 0.061 is observed with deposition was carried out on SS304 substrates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-132

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sukhatme S.P. Solar Energy Principles of Thermal Collection and Storage,, Tata McGraw-Hill publishing company limited, 2nd edition, 1984; 1-30.

Google Scholar

[2] K.P. Sibin, Siju john, Control of thermal emittance of stainless steel using sputtered tungsten thin films for solar thermal power application, Elsevier, Solar Energy Materials and Solar Cells, 2015; 133, 1-7.

DOI: 10.1016/j.solmat.2014.11.002

Google Scholar

[3] M. Vila, D. Caceres, C. Prieto Mechanical properties of sputtered silicon nitride thin films, Journal of Applied Physics, 2003; 94 (12), 7868-7873.

DOI: 10.1063/1.1626799

Google Scholar

[4] P. Quintana, A. I. Oliva, O. Ceh and J. E. Corona Thickness effects on alumina thin films, Superficies y, December 1999; 9, 280-282.

Google Scholar

[5] A. Antonaia, A.Castaldo, M.L. AddonizioS.Esposito Stability of W-Al2O3 Cermet Based Solar Coating for Receiver Tube Operating at High Temperature, Solar Energy Materials and Solar Cells, 2010; 94, 1604-1611.

DOI: 10.1016/j.solmat.2010.04.080

Google Scholar

[6] Muralidhar Singh M, Vijay G, Krupashankara M S and R S Kulkarni Effect of Argon Gas Flow Rate on the Optical and Mechanical Properties of Sputtered Tungsten Thin Film Coatings, Materials Science and Engineering, 2016;149,.

DOI: 10.1088/1757-899x/149/1/012075

Google Scholar

[7] X.H. Gao, Z.M. Guo, Q.F. Geng, P.J. Ma Enhanced Absorptance of Surface-Textured Tungsten Thin Film for Solar Absorber, Journal of Surface Engineering, 2016; 32, 840-845.

DOI: 10.1080/02670844.2016.1187466

Google Scholar

[8] Barshilia, Harish C,Sibin, K P and Siju, John Control of Infrared Emittance of Stainless Steel using Sputtered W Thin Films for Solar Thermal Applications, Solar Energy Materials and Solar Cells, 2015; 133, 921-927.

DOI: 10.1016/j.solmat.2014.11.002

Google Scholar

[9] Ali Abdolahzadeh Ziabari, A. BagheriKhatibani Optical Properties and Thermal Stability of Solar Selective Absorbers Based on Co–Al2O3 Cermets, Chinese Journal of Physics, 2017; 55, 876-885.

DOI: 10.1016/j.cjph.2017.02.015

Google Scholar

[10] Neelakanta Reddy Alumina Thin films Sputtered using Pulsed RF Magnetron Sputtering Method,, Ceramics International, 2014; 39, 89-194.

Google Scholar

[11] M. Farooq, Z. H. Lee Optimization of the Sputtering Process for Depositing Composite Thin Films, Journal of the Korean Physical Society, March 2002; 40 (3), 511-515.

Google Scholar

[12] C. Paturaud, G. Fages, M. C. Sainte Catherine, J. Machet Influence of sputtering gases on the properties of magnetron sputtered tungsten film, Elsevier, Surface and Coatings 1996; 388-393.

DOI: 10.1016/s0257-8972(96)02954-4

Google Scholar

[13] Arjun Dey, Anoop S, Parthasarathi Bera, Uma Rani Corrosion behaviour of sputtered alumina thin films, Springer, Journal of Institute of Engineers, India, Series. D, May 2015;.

DOI: 10.1007/s40033-015-0072-x

Google Scholar

[14] Ivan Martinez, Rafeal Almanza, Marcos Mazari Genaro Correa Parabolic trough reflector manufactured with aluminium first surface mirrors thermally sagged, Elsevier, Solar Energy Materials, 2000, Vol. 64. 85-96.

DOI: 10.1016/s0927-0248(00)00068-4

Google Scholar

[15] Y.L. Jeyachandran, B. Karungaran, Sa. K. Narayandass, D. Mangalaraj, T.E Jenkins, P.J. Martin Properties of Ti thin films deposited by DC Magnetron sputtering, Elsevier, Material Sci. and Engg., 2006; 431, 277-284.

DOI: 10.1016/j.msea.2006.06.020

Google Scholar

[16] Xiang-Hu Gao, Cheng-Bing Wang, Zhi-Ming Guo, Qing-Fen Geng, Wolfgang Theiss, Gang Liu Structure, optical properties and thermal stability of Al2O3 -WC nanocomposite ceramic spectrally selective solar absorbers, Elsevier, Optical Materials, 58 (2016) 219-225.

DOI: 10.1016/j.optmat.2016.05.037

Google Scholar

[17] Montgomery Douglas C Design and Analysis of Experiments,, New Delhi, Wiley India (P) Ltd, 2007; 4.

Google Scholar

[18] Volkonen E, Karlsson B. Optimization of metal-based multilayers for transparent heat mirrors, International Journal of Energy Research, 1987; 11(3), 397-403.

DOI: 10.1002/er.4440110309

Google Scholar

[19] M.K. Olsson, K.K Macak, U. Helmersson and B. Hjorvarsson. High rate recative DC magnetron sputter deposition of Al2O3 films, Journal of vacuum science technology, March 1998; A 16 (2).

DOI: 10.1116/1.581081

Google Scholar

[20] M.S. Aouadi, R.R. Parson, P.C. Wong, K.A.R Mitchell, Characterization of sputter deposited tungsten films for X-ray multilayers, Journal of vacuum science technology, 1992; A 102, 273-280.

DOI: 10.1116/1.578075

Google Scholar

[21] D.B. Mahadik, S. Gujjar, G.M. Gouda, H.C. Barshilia, Double layer SiO2/Al2O3 high emissivity coatings on stainless steel substrates using simple spray deposition system, Appl. Surf. Sci. 2014; 299, 6-11.

DOI: 10.1016/j.apsusc.2014.01.159

Google Scholar