[1]
ISO 9283. Manipulating industrial robots–performance criteria and related test methods, International Standardization Organization. Geneva, Switzerland (1998).
Google Scholar
[2]
J. Zhang, J. CAI, Error analysis and compensation method of 6-axis industrial robot. International journal on smart sensing and intelligent systems 6 (2013) 1383-1399.
DOI: 10.21307/ijssis-2017-595
Google Scholar
[3]
Tsai, Y. K.; Chan, K. Y. Investigation on the impact of nongeometric uncertainty in dynamic performance of serial and parallel robot manipulators. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233 (2019) 3487-3511.
DOI: 10.1177/0954406218815518
Google Scholar
[4]
L. Ma, P. Bazzoli, P. M. Sammons, R. G. Landers, D. A. Bristow, Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots. Robot. Robotics and Computer-Integrated Manufacturing 50 (2018) 153-167.
DOI: 10.1016/j.rcim.2017.09.006
Google Scholar
[5]
Y. Jiang, L. Yu, H. Jia, H. Zhao, H. Xia, Absolute positioning accuracy improvement in an industrial robot. Sensors 20 (2020) 4354.
DOI: 10.3390/s20164354
Google Scholar
[6]
V. Glazkov, S. Daurov, A. L'vov, A. Askarova, D. Kalikhman, Dynamic error reduction via continuous robot control using the neural network technique. In International Scientific and Practical Conference in Control Engineering and Decision Making, Springer, Cham. December 2020, 337 (pp.175-184).
DOI: 10.1007/978-3-030-65283-8_15
Google Scholar
[7]
M. Vakilinejad, A. Olabi, O. Gibaru, Identification and Compensation of periodic gear transmission errors in Robot Manipulators. In International Conference on Industrial Technology, IEEE, 2019, (pp.126-132).
DOI: 10.1109/icit.2019.8754980
Google Scholar
[8]
Z. Li, Y. Wang, K. Wang, A data-driven method based on deep belief networks for backlash error prediction in machining centers. Journal of Intelligent Manufacturing 31 (2020) 1693-1705.
DOI: 10.1007/s10845-017-1380-9
Google Scholar
[9]
R. Li, Y. Zhao, Dynamic error compensation for industrial robot based on thermal effect model. Measurement 88 (2016) 113-120.
DOI: 10.1016/j.measurement.2016.02.038
Google Scholar
[10]
R. Kluz, A. Kubit, T. Trzepiecinski, Investigations of temperature-induced errors in positioning of an industrial robot arm. Journal of Mechanical Science and Technology 32 (2018) 5421-5432.
DOI: 10.1007/s12206-018-1040-9
Google Scholar
[11]
A. Raviola, R. Guida, A. De Martin, S. Pastorelli, S. Mauro, M. Sorli, Effects of temperature and mounting configuration on the dynamic parameters identification of industrial robots. Robotics 10 (2021) 83.
DOI: 10.3390/robotics10030083
Google Scholar
[12]
J. Ju, Y. Zhao, C. Zhang, & Y. Liu, Vibration suppression of a flexible-joint robot based on parameter identification and fuzzy PID control. Algorithms 11 (2018) 189-202.
DOI: 10.3390/a11110189
Google Scholar
[13]
M. Leonesio, E. Villagrossi, M. Beschi, A. Marini, G. Bianchi, N. Pedrocchi, L. M. Tosatti, V. Grechishnikov, Y. Ilyukhin & A. Isaev, Vibration analysis of robotic milling tasks. Procedia Cirp 67 (2018) 262-267.
DOI: 10.1016/j.procir.2017.12.210
Google Scholar
[14]
H. Hage, Identification and physical simulation of a Stäubli TX90 robot for high speed milling. Doctoral dissertation, Paris, France, February, 2012. (In French).
Google Scholar
[15]
U. Schneider, M. Ansaloni, M. Drust, F. Leali, A. Verl, Experimental investigation of sources of error in robot machining. In International Workshop on Robotics in Smart Manufacturing, Springer, Berlin, Heidelberg, 2013, (pp.14-26).
DOI: 10.1007/978-3-642-39223-8_2
Google Scholar
[16]
R. Cousturier, Improvement by redundancy management of the behavior of robots with hybrid structure under machining loads. Doctoral dissertation, Clermont-Auvergne, France, November, 2017. (In French).
Google Scholar
[17]
J. Qin, F. Léonard, G. Abba, Real-time trajectory compensation in robotic friction stir welding using state estimators. IEEE Transactions on Control Systems Technology 24 (2016) 2207-2214.
DOI: 10.1109/tcst.2016.2536482
Google Scholar
[18]
K. Kolegain, F. Leonard, S. Zimmer-Chevret, A. B. Attar, G. Abba, A feedforward deflection compensation scheme coupled with an offline path planning for robotic friction stir welding. IFAC-Pap 51 (2018) 728-733.
DOI: 10.1016/j.ifacol.2018.08.405
Google Scholar
[19]
S. Mamedov, D. Popov, S. Mikhel, A. Klimchik, Compliance Error Compensation based on Reduced Model for Industrial Robots. In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, Portugal, 2018, (pp.190-201).
DOI: 10.5220/0006905701900201
Google Scholar
[20]
C. Dumas, Development of methods for metal and composite parts trimming with a robot. Doctoral dissertation, Nantes, France, December, 2011. (In French).
Google Scholar
[21]
Y. Guo, S. Yin, Y. Ren, J. Zhu, S. Yang, S. Ye, A multilevel calibration technique for an industrial robot with parallelogram mechanism. Precision Engineering 40 (2015) 261-272.
DOI: 10.1016/j.precisioneng.2015.01.001
Google Scholar
[22]
K. Kamali, A. Joubair, I. A. Bonev, P. Bigras, Elasto-geometrical calibration of an industrial robot under multidirectional external loads using a laser tracker. In International Conference on Robotics and Automation, IEEE, 2016, (pp.4320-4327).
DOI: 10.1109/icra.2016.7487630
Google Scholar
[23]
G. Xiong, Y. Ding, L. Zhu, C. Y. Su, A product-of-exponential-based robot calibration method with optimal measurement configurations. International Journal of Advanced Robotic Systems 14 (2017).
DOI: 10.1177/1729881417743555
Google Scholar
[24]
Y. Alaiwi, A. Mutlu, Simulation and motion control of industrial robot. International Scientific Journals of Scientific Technical Union of Mechanical Engineering Industry 4.0, 2 (2017) 169-174.
Google Scholar
[25]
H. Hage, P. Bidaud, N. Jardin, Practical consideration on the identification of the kinematic parameters of the Stäubli TX90 robot. In Proceedings of the 13th World Congress in Mechanism and Machine Science, Guanajuato, Mexique, 19-25 June 2011, (p.43).
Google Scholar
[26]
S. Liao, Q. Zeng, K. F. Ehmann, J. Cao, Parameter identification and nonparametric calibration of the Tri-Pyramid Robot. IEEE/ASME Transactions on Mechatronics 25 (2020) 2309-2317.
DOI: 10.1109/tmech.2020.3001021
Google Scholar
[27]
C. Landgraf, K. Ernst, G. Schleth, M. Fabritius & M. F. Huber, A hybrid neural network approach for increasing the absolute accuracy of industrial robots. In 2021 IEEE 17th International Conference on Automation Science and Engineering, Lyon, France, August 23-27, 2021, (pp.468-474).
DOI: 10.1109/case49439.2021.9551684
Google Scholar
[28]
Z. Wang, S. Zimmer-Chevret, F. Léonard & G. Abba, Improvement strategy for the geometric accuracy of bead's beginning and end parts in wire-arc additive manufacturing (WAAM). The International Journal of Advanced Manufacturing Technology (2021) 1-13.
DOI: 10.1007/s00170-021-08037-8
Google Scholar
[29]
D. Kumičáková, V. Tlach & M. Císar, Testing the performance characteristics of manipulating industrial robots. Transactions of the VŠB – Technical University of Ostrava, Mechanical Series 62 (2016) 39-50.
DOI: 10.22223/tr.2016-1/2009
Google Scholar
[30]
I. Kuric, V. Tlach, M. Sága, M. Císar & I. Zajačko, Industrial Robot Positioning Performance Measured on Inclined and Parallel Planes by Double Ballbar. Applied Sciences 11 (2021) 1777-1794.
DOI: 10.3390/app11041777
Google Scholar
[31]
M. Gaudreault, A. Joubair & I. Bonev, Self-calibration of an industrial robot using a novel affordable 3D measuring device. Sensors 18 (2018) 3380-3398.
DOI: 10.3390/s18103380
Google Scholar
[32]
S. Gharaaty, T. Shu, A. Joubair, W. F. Xie & I. A. Bonev, Online pose correction of an industrial robot using an optical coordinate measure machine system. International Journal of Advanced Robotic Systems 15 (2018).
DOI: 10.1177/1729881418787915
Google Scholar
[33]
J. Jin, N. Gans, Parameter identification for industrial robots with a fast and robust trajectory design approach. Robotics and Computer-Integrated Manufacturing 31 (2015) 21-29.
DOI: 10.1016/j.rcim.2014.06.004
Google Scholar
[34]
J. Denavite, R. S. Hartenberg, A kinematic notation for lower pair mechanism based on matrices. Journal of Applied Mechanics, Transactions ASME 22 (1955) 215-221.
DOI: 10.1115/1.4011045
Google Scholar
[35]
E. Dombre, W. Khalil, Modeling, performance analysis and control of robot manipulators, 1st ed, ISTE Ltd: London, UK, (2007).
Google Scholar
[36]
M. W. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control, 1st ed, John Wiley and Sons, Inc: Berlin Heidelberg, (2005).
Google Scholar
[37]
H. Hage, P. Bidaud, N. Jardin, Simulation of a Stäubli TX90 Robot during Milling using SimMechanics. Applied Mechanics and Materials 162 (2012) 403-412.
DOI: 10.4028/www.scientific.net/amm.162.403
Google Scholar
[38]
J. Wang, H. Zhang, T. Fuhlbrigge, Improving machining accuracy with robot deformation compensation. In International Conference on Intelligent Robots and Systems, IEEE/RSJ, 2009, (pp.3826-3831).
DOI: 10.1109/iros.2009.5353988
Google Scholar
[39]
S. Engin, Y. Altintas, Mechanics and dynamics of general milling cutters.: Part I: helical end mills. International journal of machine tools and manufacture 41 (2001) 2195-2212.
DOI: 10.1016/s0890-6955(01)00045-1
Google Scholar
[40]
H. Z. Li, W. B. Zhang, X. P. Li, Modelling of cutting forces in helical end milling using a predictive machining theory. International journal of mechanical sciences 43 (2001) 1711-1730.
DOI: 10.1016/s0020-7403(01)00020-0
Google Scholar
[41]
J. Tlusty, P. MacNeil, Dynamics of cutting force in end milling. CIRP Annals 24 (1975) 21-25.
Google Scholar
[42]
M. C. Yoon, Y. G. Kim, Cutting dynamic force modelling of end milling operation. Journal of materials processing technology 155 (2004) 1383-1389.
DOI: 10.1016/j.jmatprotec.2004.04.218
Google Scholar
[43]
E. R. Lorphevre, E. Filippi, P. Dehombreux, Inverse method for cutting forces parameters evaluation. Engineering Mechanics 14 (2007) 345-357.
Google Scholar
[44]
Y. Altintaş, P. Lee, A general mechanics and dynamics model for helical end mills. CIRP Annals 45 (1996) 59-64.
DOI: 10.1016/s0007-8506(07)63017-0
Google Scholar
[45]
J. Qin, F. Léonard, G. Abba, Non-linear observer-based control of flexible-joint manipulators used in machine processing. In: Proceedings of The ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, Nantes, France, July 2–4, 2012, 44854 (pp.251-260).
DOI: 10.1115/esda2012-82048
Google Scholar
[46]
J. Qin, Robust hybrid position/force control of a manipulator robot used in machining and/or welding. Doctoral dissertation, Metz, France, December, 2013. (In French).
Google Scholar