Investigation on Role and Impact of 3D Printing Technology in Sand Casting

Article Preview

Abstract:

3D printing has been recognized to be such a game-changer in manufacturing that it has now permeated virtually every aspect of the industry, including mould and die casting. A thorough examination of 3D printing's past, present and future in the business is provided here. Casting procedures may be enhanced or drastically altered by 3D printing. The design of goods, assemblies, and parts will be transformed by 3D printing, which is more than just a manufacturing technology. With the aid of 3D printing, sand casting is a technique that can make complex components out of almost any metal alloy at a reasonable cost. Using this integration, producers may build massive components in the least amount of time. It has also established a distinctive place in other casting elements; Examples include the ceramic shell, sand mould sand core, and wax pattern, we'll learn more about sand casting and 3D printing this week.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-42

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. International scholarly research notices. http://dx.doi.org/10.5402/2012/208760.2.

Google Scholar

[2] Bak, D. (2003). Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Automation. 23:340–5.

DOI: 10.1108/01445150310501190

Google Scholar

[3] Wohlers T. Wohlers report 2003: Additive manufacturing and 3D printing state of the industry: Annual worldwide progress report; 2003. 4.

Google Scholar

[4] Chhabra M, Singh R. Rapid casting solutions: a review. Rapid Prototyp J 2011;17:328–50, http://dx.doi.org/10.1108/13552541111156469.5.

Google Scholar

[5] Sivarupan, T., El Mansori, M., Coniglio, N., & Dargusch, M. (2020). Effect of process parameters on flexure strength and gas permeability of 3D printed sand molds. Journal of Manufacturing Processes, 54, 420-437.

DOI: 10.1016/j.jmapro.2020.02.043

Google Scholar

[6] J. Praveenchandar, D. Vetrithangam, S. Kaliappan, M. Karthick, Naresh Kumar Pegada, Pravin P. Patil, S. Govinda Rao, Syed Umar, IoT-Based Harmful Toxic Gases Monitoring and Fault Detection on the Sensor Dataset Using Deep Learning Techniques,, Scientific Programming, vol. 2022, Article ID 7516328, 11 pages, 2022. https://doi.org/10.1155/2022/7516328.

DOI: 10.1155/2022/7516328

Google Scholar

[7] N Coniglio, N., Sivarupan, T., & El Mansori, M. (2018). Investigation of process parameter effect on anisotropic properties of 3D printed sand molds. The International Journal of Advanced Manufacturing Technology, 94(5), 2175-2185.

DOI: 10.1007/s00170-017-0861-5

Google Scholar

[8] Dhamodharan, D., Byun, H. S., Shree, M. V., Veeman, D., Natrayan, L., & Stalin, B. (2022). Carbon nanodots: Synthesis, mechanisms for bio-electrical applications. Journal of Industrial and Engineering Chemistry, 110, 68-83.

DOI: 10.1016/j.jiec.2022.03.014

Google Scholar

[9] Vijay Ananth, S., Srimurugan, R., Jayaseelan, V., Geethan, A., & Xavier, J. F. (2020, October). Experimental investigation on superplastic forming behavior of AA 6063/SiCp using stir casting. In AIP conference proceedings (Vol. 2283, No. 1, p.020118). AIP Publishing LLC.

DOI: 10.1063/5.0025150

Google Scholar

[10] Rodriguez-Gonzalez, P., Fernandez-Abia, A. I., Castro-Sastre, M. A., Robles, P. E., Barreiro, J., & Leo, P. (2019). Comparative Study of Aluminum Alloy Casting obtained by Sand Casting Method and Additive Manufacturing Technology. Procedia Manufacturing, 41, 682-689.

DOI: 10.1016/j.promfg.2019.09.058

Google Scholar

[11] G. Gokilakrishnan, R. Sathishkumar, N. S. Sivakumar, S. Kaliappan, S. Sekar, Pravin P. Patil, Ram Subbiah, K. P. Yuvaraj, Feleke Worku Tadesse, Wear Behavior and FESEM Analysis of LM 25 Alloy MMHCs Reinforced with FE3O4 and Gr by Utilizing Taguchi's Technique,, Journal of Nanomaterials, vol. 2022, Article ID 3203057, 10 pages, 2022. https://doi.org/10.1155/2022/3203057.

DOI: 10.1155/2022/3203057

Google Scholar

[12] Dhinakaran Veeman, M. Varsha Shree, P. Sureshkumar, T. Jagadeesha, L. Natrayan, M. Ravichandran, Prabhu Paramasivam, Sustainable Development of Carbon Nanocomposites: Synthesis and Classification for Environmental Remediation,, Journal of Nanomaterials, vol. 2021, Article ID 5840645, 21 pages, 2021. https://doi.org/10.1155/2021/5840645.

DOI: 10.1155/2021/5840645

Google Scholar

[13] Mckenna N, Singamneni S, Diegel O, Singh D, Neitzert T, George JS, et al. Direct Metal casting through 3D printing: a critical analysis of the mould characteristics. 9th Glob Congr Manuf Manag 2008:12–4.

DOI: 10.1080/14484846.2009.11464576

Google Scholar

[14] Mitra, S., Rodríguez de Castro, A., & El Mansori, M. (2018). The effect of ageing process on three-point bending strength and permeability of 3D printed sand molds. The International Journal of Advanced Manufacturing Technology, 97(1), 1241-1251.

DOI: 10.1007/s00170-018-2024-8

Google Scholar

[15] Jayaseelan, V., & Kalaichelvan, K. (2013). Influence of friction factor on extrusion process. In Advanced materials research (Vol. 622, pp.457-460). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/amr.622-623.457

Google Scholar

[16] Palaniyappan, S., Veeman, D., Rajkumar, K., Vishal, K., Kishore, R., & Natrayan, L. (2022). Photovoltaic industrial waste as substitutional reinforcement in the preparation of additively manufactured acrylonitrile butadiene styrene composite. Arabian Journal for Science and Engineering, 1-13.

DOI: 10.1007/s13369-022-06806-5

Google Scholar

[17] S. Kaliappan, M. Karthick, Pravin P. Patil, P. Madhu, S. Sekar, Ravi Mani, D. Francisca Kalavathi, S. Mohanraj, Solomon Neway Jida, Utilization of Eco-Friendly Waste Eggshell Catalysts for Enhancing Liquid Product Yields through Pyrolysis of Forestry Residues,, Journal of Nanomaterials, vol. 2022, Article ID 3445485, 10 pages, 2022. https://doi.org/10.1155/2022/3445485.

DOI: 10.1155/2022/3445485

Google Scholar

[18] Koltygin, A. V., & Bazhenov, V. E. (2012). Development of a substitute for Z cast molding sand used on installations of 3D printing for obtaining aluminum, magnesium, and iron casting. Russian Journal of Non-Ferrous Metals, 53 (1) 38–41.

DOI: 10.3103/s1067821212010129

Google Scholar

[19] Suryanarayanan, R., Sridhar, V. G., Natrayan, L., Kaliappan, S., Merneedi, A., Sathish, T., & Yeshitla, A. (2021). Improvement on mechanical properties of submerged friction stir joining of dissimilar tailor welded aluminum blanks. Advances in Materials Science and Engineering, (2021).

DOI: 10.1155/2021/3355692

Google Scholar

[20] Kumar, R. Singh, I.P.S. Ahuja, Modeling and analysis for hardness and structure of nonferrous alloy castings produced using Zcast metal casting process through response surface methodology, Adv. Mater. Res. 1137 (2016) 101–116.

DOI: 10.4028/www.scientific.net/amr.1137.101

Google Scholar

[21] Zhao, D., Guo, W., Zhang, B., & Gao, F. (2018). Research on key technique of line forming for 3D sand mould printing based on quantitative analysis of binder content. Rapid Prototyping Journal. 25 (1) 62–75.

DOI: 10.1108/rpj-08-2017-0168

Google Scholar

[22] Hackney PM, Wooldridge R. Characterisation of direct 3D sand printing process for the production of sand cast mould tools. Rapid Prototyp J 2017;23:7–15, http://dx.doi.org/10.1108/RPJ-08-2014-0101.

DOI: 10.1108/rpj-08-2014-0101

Google Scholar

[23] Sama, S. R., Badamo, T., Lynch, P., & Manogharan, G. (2019). Novel sprue designs in metal casting via 3D sand-printing. Additive Manufacturing, 25, 563-578.

DOI: 10.1016/j.addma.2018.12.009

Google Scholar

[24] Muruganantham Ponnusamy, L. Natrayan, S. Kaliappan, G. Velmurugan, Subash Thanappan, Effectiveness of Nanosilica on Enhancing the Mechanical and Microstructure Properties of Kenaf/Carbon Fiber-Reinforced Epoxy-Based Nanocomposites,, Adsorption Science & Technology, vol. 2022, Article ID 4268314, 10 pages, 2022. https://doi.org/10.1155/2022/4268314.

DOI: 10.1155/2022/4268314

Google Scholar

[25] Snelling D, Williams CB, Druschitz AP. A comparison of binder burnout and mechanical characteristics of printed and chemically bonded sand molds. SFF Symp 2014:197–209.

Google Scholar

[26] Drokina VV, Belov VD, Chekhonin SN. Obtaining casts of aluminum alloys by foundry in loose molds fabricated on installations of three-dimensional printing. Russ.JNon-FerrousMet2011;52:24– http://dx.doi.org/10.3103/S1067821211010081.

DOI: 10.3103/s1067821211010081

Google Scholar

[27] Cohen A L. From rapid prototyping to the second industrial revolution. In: Proceedings of the Third International Conference on Rapid Prototyping, University of Dayton: Dayton, OH, 1992: 89-192.

Google Scholar

[28] Meisel, N.A., C.B. Williams, and A. Druschitz. Lightweight metal cellular structures via indirect 3D printing and casting In Proceedings of the International Solid Freeform Fabrication Symposium, pp.162-176. (2012).

Google Scholar

[29] Holtzer M, Górny M, Dańko R (2015) Microstructure and properties of ductile iron and compacted graphite iron castings. 1 ed. In: SpringerBriefs in Materials. Springer International Publishing XII, New York, p.158.

DOI: 10.1007/978-3-319-14583-9

Google Scholar

[30] Banchhor R, Ganguly S (2014) Optimization in green sand casting process for efficient, economical and quality casting. Int J Adv Engg Tech/Vol V/Issue I/Jan-March 25:29.

Google Scholar

[31] Snelling D, Blount H, Forman C, Ramsburg K, Wentzel A, Williams C, et al. The effects of 3D pritned molds on metal castings. Solid Free Fabr Symp 2013:827–45.

Google Scholar

[32] Mostafaei, A., Elliott, A. M., Barnes, J. E., Li, F., Tan, W., Cramer, C. L., & Chmielus, M. (2021). Binder jet 3D printing Process parameters, materials, properties, modeling, and challenges. Progress in Materials Science, 119, 100707.

DOI: 10.1016/j.pmatsci.2020.100707

Google Scholar

[33] Shangguan, H., Kang, J., Deng, C., Hu, Y., & Huang, T. (2017). 3D-printed shell-truss sand mold for aluminum castings. Journal of Materials Processing Technology, 250, 247-253.

DOI: 10.1016/j.jmatprotec.2017.05.010

Google Scholar

[34] Shangguan, H., Kang, J., Yi, J., Zhang, X., Wang, X., Wang, H., & Huang, T. (2018). The design of 3D-printed lattice-reinforced thickness-varying shell molds for castings. Materials, 11(4), 535.

DOI: 10.3390/ma11040535

Google Scholar

[35] Shangguan, H. L., Kang, J. W., Yi, J. H., Deng, C. Y., Hu, Y. Y., & Huang, T. (2018). Controlled cooling of an aluminum alloy casting based on 3D printed rib reinforced shell mold. China Foundry, 15(3), 210-215.

DOI: 10.1007/s41230-018-7252-x

Google Scholar

[36] Deng, C., Kang, J., Shangguan, H., Hu, Y., Huang, T., & Liu, Z. (2018). Effects of hollow structures in sand mold manufactured using 3D printing technology. Journal of Materials Processing Technology, 255, 516-523.

DOI: 10.1016/j.jmatprotec.2017.12.031

Google Scholar

[37] Kang, J., Shangguan, H., Deng, C., Hu, Y., Yi, J., Wang, X., ... & Huang, T. (2018). Additive manufacturing-driven mold design for castings. Additive Manufacturing, 22, 472-478.

DOI: 10.1016/j.addma.2018.04.037

Google Scholar

[38] Ramesh et al., (2022). Performance enhancement of selective layer coated on solar absorber panel with reflector for water heater by response surface method: A case study. Case Studies in Thermal Engineering, 36, 102093.

DOI: 10.1016/j.csite.2022.102093

Google Scholar

[39] Thiel J, Ravi S, Bryant N. Advancements in materials for three dimensional printing of molds and cores. Int J Met 2017;1:1, http://dx.doi.org/10.1007/s40962-016-0082-y.

Google Scholar

[40] Koltygin, A. V., & Bazhenov, V. E. (2012). Development of a substitute for Z cast molding sand used on installations of 3D printing for obtaining aluminum, magnesium, and iron casting. Russian Journal of Non-Ferrous Metals, 53(1), 38-41.

DOI: 10.3103/s1067821212010129

Google Scholar

[41] Utela B, Storti D, Anderson R, Ganter M. A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Process 2008;10:96–104, http://dx.doi.org/10.1016/j.jmapro.2009.03.002.

DOI: 10.1016/j.jmapro.2009.03.002

Google Scholar

[42] Pham D, Gault R. A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 1998; 38: 1257–87, http://dx.doi.org/10.1016/S0890-6955(97)00137-5.

DOI: 10.1016/s0890-6955(97)00137-5

Google Scholar

[43] Low, Z. X., Chua, Y. T., Ray, B. M., Mattia, D., Metcalfe, I. S., & Patterson, D. A. (2017). Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. Journal of membrane science, 523, 596-613.

DOI: 10.1016/j.memsci.2016.10.006

Google Scholar