[1]
Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. International scholarly research notices. http://dx.doi.org/10.5402/2012/208760.2.
Google Scholar
[2]
Bak, D. (2003). Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Automation. 23:340–5.
DOI: 10.1108/01445150310501190
Google Scholar
[3]
Wohlers T. Wohlers report 2003: Additive manufacturing and 3D printing state of the industry: Annual worldwide progress report; 2003. 4.
Google Scholar
[4]
Chhabra M, Singh R. Rapid casting solutions: a review. Rapid Prototyp J 2011;17:328–50, http://dx.doi.org/10.1108/13552541111156469.5.
Google Scholar
[5]
Sivarupan, T., El Mansori, M., Coniglio, N., & Dargusch, M. (2020). Effect of process parameters on flexure strength and gas permeability of 3D printed sand molds. Journal of Manufacturing Processes, 54, 420-437.
DOI: 10.1016/j.jmapro.2020.02.043
Google Scholar
[6]
J. Praveenchandar, D. Vetrithangam, S. Kaliappan, M. Karthick, Naresh Kumar Pegada, Pravin P. Patil, S. Govinda Rao, Syed Umar, IoT-Based Harmful Toxic Gases Monitoring and Fault Detection on the Sensor Dataset Using Deep Learning Techniques,, Scientific Programming, vol. 2022, Article ID 7516328, 11 pages, 2022. https://doi.org/10.1155/2022/7516328.
DOI: 10.1155/2022/7516328
Google Scholar
[7]
N Coniglio, N., Sivarupan, T., & El Mansori, M. (2018). Investigation of process parameter effect on anisotropic properties of 3D printed sand molds. The International Journal of Advanced Manufacturing Technology, 94(5), 2175-2185.
DOI: 10.1007/s00170-017-0861-5
Google Scholar
[8]
Dhamodharan, D., Byun, H. S., Shree, M. V., Veeman, D., Natrayan, L., & Stalin, B. (2022). Carbon nanodots: Synthesis, mechanisms for bio-electrical applications. Journal of Industrial and Engineering Chemistry, 110, 68-83.
DOI: 10.1016/j.jiec.2022.03.014
Google Scholar
[9]
Vijay Ananth, S., Srimurugan, R., Jayaseelan, V., Geethan, A., & Xavier, J. F. (2020, October). Experimental investigation on superplastic forming behavior of AA 6063/SiCp using stir casting. In AIP conference proceedings (Vol. 2283, No. 1, p.020118). AIP Publishing LLC.
DOI: 10.1063/5.0025150
Google Scholar
[10]
Rodriguez-Gonzalez, P., Fernandez-Abia, A. I., Castro-Sastre, M. A., Robles, P. E., Barreiro, J., & Leo, P. (2019). Comparative Study of Aluminum Alloy Casting obtained by Sand Casting Method and Additive Manufacturing Technology. Procedia Manufacturing, 41, 682-689.
DOI: 10.1016/j.promfg.2019.09.058
Google Scholar
[11]
G. Gokilakrishnan, R. Sathishkumar, N. S. Sivakumar, S. Kaliappan, S. Sekar, Pravin P. Patil, Ram Subbiah, K. P. Yuvaraj, Feleke Worku Tadesse, Wear Behavior and FESEM Analysis of LM 25 Alloy MMHCs Reinforced with FE3O4 and Gr by Utilizing Taguchi's Technique,, Journal of Nanomaterials, vol. 2022, Article ID 3203057, 10 pages, 2022. https://doi.org/10.1155/2022/3203057.
DOI: 10.1155/2022/3203057
Google Scholar
[12]
Dhinakaran Veeman, M. Varsha Shree, P. Sureshkumar, T. Jagadeesha, L. Natrayan, M. Ravichandran, Prabhu Paramasivam, Sustainable Development of Carbon Nanocomposites: Synthesis and Classification for Environmental Remediation,, Journal of Nanomaterials, vol. 2021, Article ID 5840645, 21 pages, 2021. https://doi.org/10.1155/2021/5840645.
DOI: 10.1155/2021/5840645
Google Scholar
[13]
Mckenna N, Singamneni S, Diegel O, Singh D, Neitzert T, George JS, et al. Direct Metal casting through 3D printing: a critical analysis of the mould characteristics. 9th Glob Congr Manuf Manag 2008:12–4.
DOI: 10.1080/14484846.2009.11464576
Google Scholar
[14]
Mitra, S., Rodríguez de Castro, A., & El Mansori, M. (2018). The effect of ageing process on three-point bending strength and permeability of 3D printed sand molds. The International Journal of Advanced Manufacturing Technology, 97(1), 1241-1251.
DOI: 10.1007/s00170-018-2024-8
Google Scholar
[15]
Jayaseelan, V., & Kalaichelvan, K. (2013). Influence of friction factor on extrusion process. In Advanced materials research (Vol. 622, pp.457-460). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/amr.622-623.457
Google Scholar
[16]
Palaniyappan, S., Veeman, D., Rajkumar, K., Vishal, K., Kishore, R., & Natrayan, L. (2022). Photovoltaic industrial waste as substitutional reinforcement in the preparation of additively manufactured acrylonitrile butadiene styrene composite. Arabian Journal for Science and Engineering, 1-13.
DOI: 10.1007/s13369-022-06806-5
Google Scholar
[17]
S. Kaliappan, M. Karthick, Pravin P. Patil, P. Madhu, S. Sekar, Ravi Mani, D. Francisca Kalavathi, S. Mohanraj, Solomon Neway Jida, Utilization of Eco-Friendly Waste Eggshell Catalysts for Enhancing Liquid Product Yields through Pyrolysis of Forestry Residues,, Journal of Nanomaterials, vol. 2022, Article ID 3445485, 10 pages, 2022. https://doi.org/10.1155/2022/3445485.
DOI: 10.1155/2022/3445485
Google Scholar
[18]
Koltygin, A. V., & Bazhenov, V. E. (2012). Development of a substitute for Z cast molding sand used on installations of 3D printing for obtaining aluminum, magnesium, and iron casting. Russian Journal of Non-Ferrous Metals, 53 (1) 38–41.
DOI: 10.3103/s1067821212010129
Google Scholar
[19]
Suryanarayanan, R., Sridhar, V. G., Natrayan, L., Kaliappan, S., Merneedi, A., Sathish, T., & Yeshitla, A. (2021). Improvement on mechanical properties of submerged friction stir joining of dissimilar tailor welded aluminum blanks. Advances in Materials Science and Engineering, (2021).
DOI: 10.1155/2021/3355692
Google Scholar
[20]
Kumar, R. Singh, I.P.S. Ahuja, Modeling and analysis for hardness and structure of nonferrous alloy castings produced using Zcast metal casting process through response surface methodology, Adv. Mater. Res. 1137 (2016) 101–116.
DOI: 10.4028/www.scientific.net/amr.1137.101
Google Scholar
[21]
Zhao, D., Guo, W., Zhang, B., & Gao, F. (2018). Research on key technique of line forming for 3D sand mould printing based on quantitative analysis of binder content. Rapid Prototyping Journal. 25 (1) 62–75.
DOI: 10.1108/rpj-08-2017-0168
Google Scholar
[22]
Hackney PM, Wooldridge R. Characterisation of direct 3D sand printing process for the production of sand cast mould tools. Rapid Prototyp J 2017;23:7–15, http://dx.doi.org/10.1108/RPJ-08-2014-0101.
DOI: 10.1108/rpj-08-2014-0101
Google Scholar
[23]
Sama, S. R., Badamo, T., Lynch, P., & Manogharan, G. (2019). Novel sprue designs in metal casting via 3D sand-printing. Additive Manufacturing, 25, 563-578.
DOI: 10.1016/j.addma.2018.12.009
Google Scholar
[24]
Muruganantham Ponnusamy, L. Natrayan, S. Kaliappan, G. Velmurugan, Subash Thanappan, Effectiveness of Nanosilica on Enhancing the Mechanical and Microstructure Properties of Kenaf/Carbon Fiber-Reinforced Epoxy-Based Nanocomposites,, Adsorption Science & Technology, vol. 2022, Article ID 4268314, 10 pages, 2022. https://doi.org/10.1155/2022/4268314.
DOI: 10.1155/2022/4268314
Google Scholar
[25]
Snelling D, Williams CB, Druschitz AP. A comparison of binder burnout and mechanical characteristics of printed and chemically bonded sand molds. SFF Symp 2014:197–209.
Google Scholar
[26]
Drokina VV, Belov VD, Chekhonin SN. Obtaining casts of aluminum alloys by foundry in loose molds fabricated on installations of three-dimensional printing. Russ.JNon-FerrousMet2011;52:24– http://dx.doi.org/10.3103/S1067821211010081.
DOI: 10.3103/s1067821211010081
Google Scholar
[27]
Cohen A L. From rapid prototyping to the second industrial revolution. In: Proceedings of the Third International Conference on Rapid Prototyping, University of Dayton: Dayton, OH, 1992: 89-192.
Google Scholar
[28]
Meisel, N.A., C.B. Williams, and A. Druschitz. Lightweight metal cellular structures via indirect 3D printing and casting In Proceedings of the International Solid Freeform Fabrication Symposium, pp.162-176. (2012).
Google Scholar
[29]
Holtzer M, Górny M, Dańko R (2015) Microstructure and properties of ductile iron and compacted graphite iron castings. 1 ed. In: SpringerBriefs in Materials. Springer International Publishing XII, New York, p.158.
DOI: 10.1007/978-3-319-14583-9
Google Scholar
[30]
Banchhor R, Ganguly S (2014) Optimization in green sand casting process for efficient, economical and quality casting. Int J Adv Engg Tech/Vol V/Issue I/Jan-March 25:29.
Google Scholar
[31]
Snelling D, Blount H, Forman C, Ramsburg K, Wentzel A, Williams C, et al. The effects of 3D pritned molds on metal castings. Solid Free Fabr Symp 2013:827–45.
Google Scholar
[32]
Mostafaei, A., Elliott, A. M., Barnes, J. E., Li, F., Tan, W., Cramer, C. L., & Chmielus, M. (2021). Binder jet 3D printing Process parameters, materials, properties, modeling, and challenges. Progress in Materials Science, 119, 100707.
DOI: 10.1016/j.pmatsci.2020.100707
Google Scholar
[33]
Shangguan, H., Kang, J., Deng, C., Hu, Y., & Huang, T. (2017). 3D-printed shell-truss sand mold for aluminum castings. Journal of Materials Processing Technology, 250, 247-253.
DOI: 10.1016/j.jmatprotec.2017.05.010
Google Scholar
[34]
Shangguan, H., Kang, J., Yi, J., Zhang, X., Wang, X., Wang, H., & Huang, T. (2018). The design of 3D-printed lattice-reinforced thickness-varying shell molds for castings. Materials, 11(4), 535.
DOI: 10.3390/ma11040535
Google Scholar
[35]
Shangguan, H. L., Kang, J. W., Yi, J. H., Deng, C. Y., Hu, Y. Y., & Huang, T. (2018). Controlled cooling of an aluminum alloy casting based on 3D printed rib reinforced shell mold. China Foundry, 15(3), 210-215.
DOI: 10.1007/s41230-018-7252-x
Google Scholar
[36]
Deng, C., Kang, J., Shangguan, H., Hu, Y., Huang, T., & Liu, Z. (2018). Effects of hollow structures in sand mold manufactured using 3D printing technology. Journal of Materials Processing Technology, 255, 516-523.
DOI: 10.1016/j.jmatprotec.2017.12.031
Google Scholar
[37]
Kang, J., Shangguan, H., Deng, C., Hu, Y., Yi, J., Wang, X., ... & Huang, T. (2018). Additive manufacturing-driven mold design for castings. Additive Manufacturing, 22, 472-478.
DOI: 10.1016/j.addma.2018.04.037
Google Scholar
[38]
Ramesh et al., (2022). Performance enhancement of selective layer coated on solar absorber panel with reflector for water heater by response surface method: A case study. Case Studies in Thermal Engineering, 36, 102093.
DOI: 10.1016/j.csite.2022.102093
Google Scholar
[39]
Thiel J, Ravi S, Bryant N. Advancements in materials for three dimensional printing of molds and cores. Int J Met 2017;1:1, http://dx.doi.org/10.1007/s40962-016-0082-y.
Google Scholar
[40]
Koltygin, A. V., & Bazhenov, V. E. (2012). Development of a substitute for Z cast molding sand used on installations of 3D printing for obtaining aluminum, magnesium, and iron casting. Russian Journal of Non-Ferrous Metals, 53(1), 38-41.
DOI: 10.3103/s1067821212010129
Google Scholar
[41]
Utela B, Storti D, Anderson R, Ganter M. A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Process 2008;10:96–104, http://dx.doi.org/10.1016/j.jmapro.2009.03.002.
DOI: 10.1016/j.jmapro.2009.03.002
Google Scholar
[42]
Pham D, Gault R. A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 1998; 38: 1257–87, http://dx.doi.org/10.1016/S0890-6955(97)00137-5.
DOI: 10.1016/s0890-6955(97)00137-5
Google Scholar
[43]
Low, Z. X., Chua, Y. T., Ray, B. M., Mattia, D., Metcalfe, I. S., & Patterson, D. A. (2017). Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. Journal of membrane science, 523, 596-613.
DOI: 10.1016/j.memsci.2016.10.006
Google Scholar