Enhancing Structural Vibration Damping in Marine Machinery: A Comprehensive Numerical Investigation with Modal and Harmonic Analysis

Article Preview

Abstract:

This article presents a comprehensive study on the damping of vibrations in a motor-pump assembly using viscoelastic and constrained layer damping treatments. The assembly's structural model, designed using SolidWorks software, is subjected to modal and harmonic analyses in ANSYS. The primary goal is to mitigate vibration amplitudes originating from the motor and pump to enhance the assembly's operational performance. Three damping treatments are investigated: Free Layer Damping (FLD), Sandwich Constrained Layer Damping (CLD), and a novel Multilayer CLD approach. The viscoelastic material is modeled using the Prony series method, and its properties are incorporated into the finite element analysis Results demonstrate that the application of damping treatments significantly reduces vibration amplitudes compared to the untreated structure. Among the treatments, the Multilayer CLD approach exhibits the highest damping efficiency, reducing the maximum amplitude by approximately 52% compared to the base structure. The study showcases the advantages of utilizing viscoelastic and constrained layer damping techniques for enhancing vibration control and operational stability in industrial assemblies. The research findings contribute to the field of structural dynamics and vibration control, offering valuable insights into the design and optimization of mechanical systems subjected to dynamic loads. This study opens avenues for further research and practical applications aimed at improving the performance and reliability of motor-pump assemblies and similar industrial equipment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-56

Citation:

Online since:

April 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jin Guoyong, Tiangui Ye, Zhu Su. Structural vibration, Springer Berlin, Heidelberg 2015.

Google Scholar

[2] Neild, S. A., P. D. McFadden., M. S. Williams. A review of time-frequency methods for structural vibration analysis. 25, no. 6 (2003): 713-728.

DOI: 10.1016/s0141-0296(02)00194-3

Google Scholar

[3] Cai Qinlin, Songye Zhu. The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review. Renew. Sust. Energ. Rev. 155 (2022): 111920.

DOI: 10.1016/j.rser.2021.111920

Google Scholar

[4] Ma Ruisheng, Kaiming Bi, Hong Hao. Inerter-based structural vibration control: A state-of-the-art review. Eng. Struct. 243 (2021): 112655.

DOI: 10.1016/j.engstruct.2021.112655

Google Scholar

[5] Lu Zheng, Zixin Wang, Ying Zhou, Xilin Lu. Nonlinear dissipative devices in structural vibration control: A review. J. Sound Vib. 423 (2018): 18-49.

DOI: 10.1016/j.jsv.2018.02.052

Google Scholar

[6] Huang Z. W., X. G. Hua, Z. Q. Chen, H. W. Niu. Modeling, testing, and validation of an eddy current damper for structural vibration control. J. Aerosp. Eng 31, no. 5 (2018): 04018063.

DOI: 10.1061/(asce)as.1943-5525.0000891

Google Scholar

[7] Mouritz A. P., Evan Gellert, Peter Burchill, Karen Challis. Review of advanced composite structures for naval ships and submarines. Compos. Struct. 53, no. 1 (2001): 21-42.

DOI: 10.1016/s0263-8223(00)00175-6

Google Scholar

[8] Winberg Mathias, Sven Johansson, Thomas L. Lagö0. Control approaches for active noise and vibration control in a naval application. In Seventh International Congress on Sound and Vibration. Int. Inst. of Acoustics and Vibration (IIAV), 2000.

Google Scholar

[9] Vergassola Gianmarco, Dario Boote, Angelo Tonelli. On the damping loss factor of viscoelastic materials for naval applications. Ships Offshore Struct. 13, no. 5 (2018): 466-475.

DOI: 10.1080/17445302.2018.1425338

Google Scholar

[10] Guo Jun, Shichun Huang, Taranukha Nikolay, Mingqi Li. Vibration damping of naval ships based on ship shock trials. Appl. Acoust. 133 (2018): 52-57.

DOI: 10.1016/j.apacoust.2017.12.009

Google Scholar

[11] Zhang Heng, Xiaohong Ding, Hao Li, Min Xiong. Multi-scale structural topology optimization of free-layer damping structures with damping composite materials. Compos. Struct. 212 (2019): 609-624.

DOI: 10.1016/j.compstruct.2019.01.059

Google Scholar

[12] Zheng H., G. S. H. Pau, Y. Y. Wang. A comparative study on optimization of constrained layer damping treatment for structural vibration control. Thin-Walled Struct. 44, no. 8 (2006): 886-896.

DOI: 10.1016/j.tws.2006.08.005

Google Scholar

[13] Zhang Junhui, Shiqi Xia, Shaogan Ye, Bing Xu, Wei Song, Shiqiang Zhu, Hesheng Tang, Jiawei Xiang. Experimental investigation on the noise reduction of an axial piston pump using free-layer damping material treatment. Appl. Acoust. 139 (2018): 1-7.

DOI: 10.1016/j.apacoust.2018.04.013

Google Scholar

[14] Zhang Heng, Xiaohong Ding, Hao Li, Min Xiong. Multi-scale structural topology optimization of free-layer damping structures with damping composite materials. Compos. Struct 212 (2019): 609-624.

DOI: 10.1016/j.compstruct.2019.01.059

Google Scholar

[15] Gaurav Sharma, Adepu Kumaraswamy, Sangram Kesari Rath. Comparative theoretical and experimental analysis of vibration damping performance in multilayer constrained layer damping structures: Aluminium versus glass fiber reinforced polymer. J. Acoust. Soc. Am. (2023); 154 (4_supplement): A267

DOI: 10.1121/10.0023485

Google Scholar

[16] Zhang Dongdong, Yonghui Wu, Xi Lu, Ling Zheng. Topology optimization of constrained layer damping plates with the frequency-and temperature-dependent viscoelastic core via the parametric level set method. Mech. Adv. Mater. Struct. 29, no. 1 (2022): 154-170.

DOI: 10.1080/15376494.2021.1938302

Google Scholar

[17] Cui Mingtao, Jie Wang, Pengjie Li, Min Pan. Topology optimization of plates with constrained Layer damping treatments using a modified guide-weight method. J. Vib. Eng. Technol. (2022): 1-18.

DOI: 10.1007/s42417-021-00361-3

Google Scholar

[18] Li Hui, Ziheng Wang, Haiyu Lv, Zhengxue Zhou, Qingkai Han, Jinguo Liu, Zhaoye Qin. Nonlinear vibration analysis of fiber reinforced composite cylindrical shells with partial constrained layer damping treatment. Thin-Walled Struct. 157 (2020): 107000.

DOI: 10.1016/j.tws.2020.107000

Google Scholar

[19] Shu Zhan, Ruokai You, Ying Zhou. Viscoelastic materials for structural dampers: A review. Constr Build Mater. 342 (2022): 127955.

DOI: 10.1016/j.conbuildmat.2022.127955

Google Scholar

[20] Huchard Thomas, Guillaume Robin, Marc Poncot, Sandrine Hoppe, D. A. Y. A. El Mostafa. Elaboration, characterization and modelling of periodic viscoelastic sandwich beams for lightening and vibration damping" Mech. Res. Commun 121 (2022): 103863.

DOI: 10.1016/j.mechrescom.2022.103863

Google Scholar

[21] Joubert A., G. Allaire, S. Amstutz, J. Diani. Damping optimization of viscoelastic cantilever beams and plates under free vibration. Comput Struct .268 (2022): 106811.

DOI: 10.1016/j.compstruc.2022.106811

Google Scholar

[22] Chakraborty Bikash Chandra, Praveen Srinivasan. Vibration Damping by Polymers. Smart Polymers: Basics and Applications, CRC Press (2022): 263.

DOI: 10.1201/9781003037880-13

Google Scholar

[23] Trindade M. A., A. Benjeddou, R. Ohayon. Modeling of frequency-dependent viscoelastic materials for active-passive vibration damping. J. Vib. Acoust. 122, no. 2 (2000): 169-174.

DOI: 10.1115/1.568429

Google Scholar

[24] Li Zhuang, Malcolm J. Crocker. A review on vibration damping in sandwich composite structures. Int. J. Acoust. Vib. 10, no. 4 (2005): 159-169.

Google Scholar

[25] Teng Tso-Liang, Ning-Kang Hu. Analysis of damping characteristics for viscoelastic laminated beams. Comput Methods Appl Mech Eng. 190, no. 29-30 (2001): 3881-3892.

DOI: 10.1016/s0045-7825(00)00305-4

Google Scholar

[26] Homaeinezhad MR, FotoohiNia F, Gholyan HM. Controlling uncertain nonlinear structural vibrations of moving continuum system by embedding a vibration monitoring unit to feedback algorithm. Struct Control Health Monit. (2020): 27:e2626.

DOI: 10.1002/stc.2626

Google Scholar

[27] Mottahedi M., Dadalau A., Hafla A., Verl A. Numerical analysis of relaxation test based on Prony series material model. In Integrated Systems, Design and Technology: Knowledge Transfer in New Technologies, pp.79-91. Springer Berlin Heidelberg, (2011).

DOI: 10.1007/978-3-642-17384-4_8

Google Scholar

[28] Ciganas J., Bubulis A.. Jurenas V., Griskevicius P., Palevicius A., Urbaite, S., Janusas G. Dynamic Mechanical Properties of PVC Plastics in the Formation of Microstructures with Novel Magnetostrictor. Micromachines (2023): 14, 820.

DOI: 10.3390/mi14040820

Google Scholar

[29] Latifi M., M. Kharazi, H. R. Ovesy. Effect of integral viscoelastic core on the nonlinear dynamic behaviour of composite sandwich beams with rectangular cross sections. Int. J. Mech. Sci. 123 (2017): 141-150.

DOI: 10.1016/j.ijmecsci.2017.02.007

Google Scholar

[30] Sellami Takwa, Hanen Berriri, A. Moumen Darcherif, Sana Jelassi, M. Faouizi Mimouni. Modal and harmonic analysis of three-dimensional wind turbine models. Wind. Eng. 40, no. 6 (2016): 518-527.

DOI: 10.1177/0309524x16671093

Google Scholar

[31] Murin J., Aminbaghai M., Kutis V., Hrabovsky J. Modal analysis of the FGM beams with effect of axial force under longitudinal variable elastic Winkler foundation. Eng. Struct. 49, (2013): 234-247.

DOI: 10.1016/j.engstruct.2012.09.039

Google Scholar

[32] Kohnke P. C. Ansys In Finite Element Systems: A Handbook, pp.19-25. Berlin, Heidelberg: Springer Berlin Heidelberg, (1982).

Google Scholar

[33] De Cazenove J., D. A. Rade, A. M. G. De Lima, C. A. Araújo. A numerical and experimental investigation on self-heating effects in viscoelastic dampers Mech Syst Signal Process. 27 (2012): 433-445.

DOI: 10.1016/j.ymssp.2011.05.004

Google Scholar

[34] Yashavantha Kumar G.A., K.M Sathish Kumar. Free Vibration Analysis of Smart Composite Beam. Mater. Today: Proc. 4, no. 2 (2016): 2487-2491.

DOI: 10.1016/j.matpr.2017.02.101

Google Scholar

[35] Serra-Aguila A., J. M. Puigoriol-Forcada, G. Reyes, J. Menacho. Viscoelastic models revisited: characteristics and interconversion formulas for generalized Kelvin–Voigt and Maxwell models. Acta Mech. Sin.35 (2019): 1191-1209.

DOI: 10.1007/s10409-019-00895-6

Google Scholar

[36] Pajic-Lijakovic Ivana. The basic concept of viscoelasticity In Viscoelasticity and collective cell migration, pp.21-46. Academic Press, (2021).

DOI: 10.1016/b978-0-12-820310-1.00006-9

Google Scholar

[37] Krusser A. I., M. V. Shitikova. Classification of viscoelastic models with integer and fractional order derivatives. IOP Conf. Ser.: Mater. Sci. Eng. vol. 747, no. 1, p.012007. IOP Publishing, (2020).

DOI: 10.1088/1757-899x/747/1/012007

Google Scholar

[38] Ferry J.D. Viscoelastic properties of polymers. 3rd edition: John Wiley & Sons. (1980).

Google Scholar

[39] Tschoegl N. W., Knauss W. G., Emri I. The effect of temperature and pressure on the mechanical properties of thermo- and/or piezorheologically simple polymeric materials in thermodynamic equilibrium - a critical review. Mech. Time-Depend. Mater. 6 (2002) :53-99

Google Scholar

[40] Barrientos E., Pelayo F., Noriega Á. Optimal discrete-time Prony series fitting method for viscoelastic materials. Mech. Time-Depend. Mater. 23, (2019): 193–206

DOI: 10.1007/s11043-018-9394-z

Google Scholar

[41] Pierro Elena, Giuseppe Carbone. A New Technique for the Characterization of Viscoelastic Materials: Theory, Experiments and Comparison with DMA. J. Sound Vib. 515, (2021): 116462.

DOI: 10.1016/j.jsv.2021.116462

Google Scholar

[42] Meyer N., R. Seifried. Numerical and Experimental Investigations in the Damping Behavior of Particle Dampers Attached to a Vibrating Structure. Comput Struct. 238, (2020): 106281.

DOI: 10.1016/j.compstruc.2020.106281

Google Scholar

[43] Brinson H. L., Brinson L. C. Polymer Engineering Science and Viscoelasticity, Springer Verlag, New York. (2008)

Google Scholar

[44] Menard K.P., Menard N. Dynamic Mechanical Analysis, third ed. CRC Press, Boca Raton, 2020.

Google Scholar

[45] Cai C., H. Zheng, M. S. Khan, K. C. Hung. Modeling of material damping properties in ANSYS. In CADFEM users' meeting and ANSYS conference, (2002): 9-11.

Google Scholar

[46] ANSYS Mechanical User's Guide. ANSYS, Canonsburg .(2013)

Google Scholar