[1]
Jin Guoyong, Tiangui Ye, Zhu Su. Structural vibration, Springer Berlin, Heidelberg 2015.
Google Scholar
[2]
Neild, S. A., P. D. McFadden., M. S. Williams. A review of time-frequency methods for structural vibration analysis. 25, no. 6 (2003): 713-728.
DOI: 10.1016/s0141-0296(02)00194-3
Google Scholar
[3]
Cai Qinlin, Songye Zhu. The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review. Renew. Sust. Energ. Rev. 155 (2022): 111920.
DOI: 10.1016/j.rser.2021.111920
Google Scholar
[4]
Ma Ruisheng, Kaiming Bi, Hong Hao. Inerter-based structural vibration control: A state-of-the-art review. Eng. Struct. 243 (2021): 112655.
DOI: 10.1016/j.engstruct.2021.112655
Google Scholar
[5]
Lu Zheng, Zixin Wang, Ying Zhou, Xilin Lu. Nonlinear dissipative devices in structural vibration control: A review. J. Sound Vib. 423 (2018): 18-49.
DOI: 10.1016/j.jsv.2018.02.052
Google Scholar
[6]
Huang Z. W., X. G. Hua, Z. Q. Chen, H. W. Niu. Modeling, testing, and validation of an eddy current damper for structural vibration control. J. Aerosp. Eng 31, no. 5 (2018): 04018063.
DOI: 10.1061/(asce)as.1943-5525.0000891
Google Scholar
[7]
Mouritz A. P., Evan Gellert, Peter Burchill, Karen Challis. Review of advanced composite structures for naval ships and submarines. Compos. Struct. 53, no. 1 (2001): 21-42.
DOI: 10.1016/s0263-8223(00)00175-6
Google Scholar
[8]
Winberg Mathias, Sven Johansson, Thomas L. Lagö0. Control approaches for active noise and vibration control in a naval application. In Seventh International Congress on Sound and Vibration. Int. Inst. of Acoustics and Vibration (IIAV), 2000.
Google Scholar
[9]
Vergassola Gianmarco, Dario Boote, Angelo Tonelli. On the damping loss factor of viscoelastic materials for naval applications. Ships Offshore Struct. 13, no. 5 (2018): 466-475.
DOI: 10.1080/17445302.2018.1425338
Google Scholar
[10]
Guo Jun, Shichun Huang, Taranukha Nikolay, Mingqi Li. Vibration damping of naval ships based on ship shock trials. Appl. Acoust. 133 (2018): 52-57.
DOI: 10.1016/j.apacoust.2017.12.009
Google Scholar
[11]
Zhang Heng, Xiaohong Ding, Hao Li, Min Xiong. Multi-scale structural topology optimization of free-layer damping structures with damping composite materials. Compos. Struct. 212 (2019): 609-624.
DOI: 10.1016/j.compstruct.2019.01.059
Google Scholar
[12]
Zheng H., G. S. H. Pau, Y. Y. Wang. A comparative study on optimization of constrained layer damping treatment for structural vibration control. Thin-Walled Struct. 44, no. 8 (2006): 886-896.
DOI: 10.1016/j.tws.2006.08.005
Google Scholar
[13]
Zhang Junhui, Shiqi Xia, Shaogan Ye, Bing Xu, Wei Song, Shiqiang Zhu, Hesheng Tang, Jiawei Xiang. Experimental investigation on the noise reduction of an axial piston pump using free-layer damping material treatment. Appl. Acoust. 139 (2018): 1-7.
DOI: 10.1016/j.apacoust.2018.04.013
Google Scholar
[14]
Zhang Heng, Xiaohong Ding, Hao Li, Min Xiong. Multi-scale structural topology optimization of free-layer damping structures with damping composite materials. Compos. Struct 212 (2019): 609-624.
DOI: 10.1016/j.compstruct.2019.01.059
Google Scholar
[15]
Gaurav Sharma, Adepu Kumaraswamy, Sangram Kesari Rath. Comparative theoretical and experimental analysis of vibration damping performance in multilayer constrained layer damping structures: Aluminium versus glass fiber reinforced polymer. J. Acoust. Soc. Am. (2023); 154 (4_supplement): A267
DOI: 10.1121/10.0023485
Google Scholar
[16]
Zhang Dongdong, Yonghui Wu, Xi Lu, Ling Zheng. Topology optimization of constrained layer damping plates with the frequency-and temperature-dependent viscoelastic core via the parametric level set method. Mech. Adv. Mater. Struct. 29, no. 1 (2022): 154-170.
DOI: 10.1080/15376494.2021.1938302
Google Scholar
[17]
Cui Mingtao, Jie Wang, Pengjie Li, Min Pan. Topology optimization of plates with constrained Layer damping treatments using a modified guide-weight method. J. Vib. Eng. Technol. (2022): 1-18.
DOI: 10.1007/s42417-021-00361-3
Google Scholar
[18]
Li Hui, Ziheng Wang, Haiyu Lv, Zhengxue Zhou, Qingkai Han, Jinguo Liu, Zhaoye Qin. Nonlinear vibration analysis of fiber reinforced composite cylindrical shells with partial constrained layer damping treatment. Thin-Walled Struct. 157 (2020): 107000.
DOI: 10.1016/j.tws.2020.107000
Google Scholar
[19]
Shu Zhan, Ruokai You, Ying Zhou. Viscoelastic materials for structural dampers: A review. Constr Build Mater. 342 (2022): 127955.
DOI: 10.1016/j.conbuildmat.2022.127955
Google Scholar
[20]
Huchard Thomas, Guillaume Robin, Marc Poncot, Sandrine Hoppe, D. A. Y. A. El Mostafa. Elaboration, characterization and modelling of periodic viscoelastic sandwich beams for lightening and vibration damping" Mech. Res. Commun 121 (2022): 103863.
DOI: 10.1016/j.mechrescom.2022.103863
Google Scholar
[21]
Joubert A., G. Allaire, S. Amstutz, J. Diani. Damping optimization of viscoelastic cantilever beams and plates under free vibration. Comput Struct .268 (2022): 106811.
DOI: 10.1016/j.compstruc.2022.106811
Google Scholar
[22]
Chakraborty Bikash Chandra, Praveen Srinivasan. Vibration Damping by Polymers. Smart Polymers: Basics and Applications, CRC Press (2022): 263.
DOI: 10.1201/9781003037880-13
Google Scholar
[23]
Trindade M. A., A. Benjeddou, R. Ohayon. Modeling of frequency-dependent viscoelastic materials for active-passive vibration damping. J. Vib. Acoust. 122, no. 2 (2000): 169-174.
DOI: 10.1115/1.568429
Google Scholar
[24]
Li Zhuang, Malcolm J. Crocker. A review on vibration damping in sandwich composite structures. Int. J. Acoust. Vib. 10, no. 4 (2005): 159-169.
Google Scholar
[25]
Teng Tso-Liang, Ning-Kang Hu. Analysis of damping characteristics for viscoelastic laminated beams. Comput Methods Appl Mech Eng. 190, no. 29-30 (2001): 3881-3892.
DOI: 10.1016/s0045-7825(00)00305-4
Google Scholar
[26]
Homaeinezhad MR, FotoohiNia F, Gholyan HM. Controlling uncertain nonlinear structural vibrations of moving continuum system by embedding a vibration monitoring unit to feedback algorithm. Struct Control Health Monit. (2020): 27:e2626.
DOI: 10.1002/stc.2626
Google Scholar
[27]
Mottahedi M., Dadalau A., Hafla A., Verl A. Numerical analysis of relaxation test based on Prony series material model. In Integrated Systems, Design and Technology: Knowledge Transfer in New Technologies, pp.79-91. Springer Berlin Heidelberg, (2011).
DOI: 10.1007/978-3-642-17384-4_8
Google Scholar
[28]
Ciganas J., Bubulis A.. Jurenas V., Griskevicius P., Palevicius A., Urbaite, S., Janusas G. Dynamic Mechanical Properties of PVC Plastics in the Formation of Microstructures with Novel Magnetostrictor. Micromachines (2023): 14, 820.
DOI: 10.3390/mi14040820
Google Scholar
[29]
Latifi M., M. Kharazi, H. R. Ovesy. Effect of integral viscoelastic core on the nonlinear dynamic behaviour of composite sandwich beams with rectangular cross sections. Int. J. Mech. Sci. 123 (2017): 141-150.
DOI: 10.1016/j.ijmecsci.2017.02.007
Google Scholar
[30]
Sellami Takwa, Hanen Berriri, A. Moumen Darcherif, Sana Jelassi, M. Faouizi Mimouni. Modal and harmonic analysis of three-dimensional wind turbine models. Wind. Eng. 40, no. 6 (2016): 518-527.
DOI: 10.1177/0309524x16671093
Google Scholar
[31]
Murin J., Aminbaghai M., Kutis V., Hrabovsky J. Modal analysis of the FGM beams with effect of axial force under longitudinal variable elastic Winkler foundation. Eng. Struct. 49, (2013): 234-247.
DOI: 10.1016/j.engstruct.2012.09.039
Google Scholar
[32]
Kohnke P. C. Ansys In Finite Element Systems: A Handbook, pp.19-25. Berlin, Heidelberg: Springer Berlin Heidelberg, (1982).
Google Scholar
[33]
De Cazenove J., D. A. Rade, A. M. G. De Lima, C. A. Araújo. A numerical and experimental investigation on self-heating effects in viscoelastic dampers Mech Syst Signal Process. 27 (2012): 433-445.
DOI: 10.1016/j.ymssp.2011.05.004
Google Scholar
[34]
Yashavantha Kumar G.A., K.M Sathish Kumar. Free Vibration Analysis of Smart Composite Beam. Mater. Today: Proc. 4, no. 2 (2016): 2487-2491.
DOI: 10.1016/j.matpr.2017.02.101
Google Scholar
[35]
Serra-Aguila A., J. M. Puigoriol-Forcada, G. Reyes, J. Menacho. Viscoelastic models revisited: characteristics and interconversion formulas for generalized Kelvin–Voigt and Maxwell models. Acta Mech. Sin.35 (2019): 1191-1209.
DOI: 10.1007/s10409-019-00895-6
Google Scholar
[36]
Pajic-Lijakovic Ivana. The basic concept of viscoelasticity In Viscoelasticity and collective cell migration, pp.21-46. Academic Press, (2021).
DOI: 10.1016/b978-0-12-820310-1.00006-9
Google Scholar
[37]
Krusser A. I., M. V. Shitikova. Classification of viscoelastic models with integer and fractional order derivatives. IOP Conf. Ser.: Mater. Sci. Eng. vol. 747, no. 1, p.012007. IOP Publishing, (2020).
DOI: 10.1088/1757-899x/747/1/012007
Google Scholar
[38]
Ferry J.D. Viscoelastic properties of polymers. 3rd edition: John Wiley & Sons. (1980).
Google Scholar
[39]
Tschoegl N. W., Knauss W. G., Emri I. The effect of temperature and pressure on the mechanical properties of thermo- and/or piezorheologically simple polymeric materials in thermodynamic equilibrium - a critical review. Mech. Time-Depend. Mater. 6 (2002) :53-99
Google Scholar
[40]
Barrientos E., Pelayo F., Noriega Á. Optimal discrete-time Prony series fitting method for viscoelastic materials. Mech. Time-Depend. Mater. 23, (2019): 193–206
DOI: 10.1007/s11043-018-9394-z
Google Scholar
[41]
Pierro Elena, Giuseppe Carbone. A New Technique for the Characterization of Viscoelastic Materials: Theory, Experiments and Comparison with DMA. J. Sound Vib. 515, (2021): 116462.
DOI: 10.1016/j.jsv.2021.116462
Google Scholar
[42]
Meyer N., R. Seifried. Numerical and Experimental Investigations in the Damping Behavior of Particle Dampers Attached to a Vibrating Structure. Comput Struct. 238, (2020): 106281.
DOI: 10.1016/j.compstruc.2020.106281
Google Scholar
[43]
Brinson H. L., Brinson L. C. Polymer Engineering Science and Viscoelasticity, Springer Verlag, New York. (2008)
Google Scholar
[44]
Menard K.P., Menard N. Dynamic Mechanical Analysis, third ed. CRC Press, Boca Raton, 2020.
Google Scholar
[45]
Cai C., H. Zheng, M. S. Khan, K. C. Hung. Modeling of material damping properties in ANSYS. In CADFEM users' meeting and ANSYS conference, (2002): 9-11.
Google Scholar
[46]
ANSYS Mechanical User's Guide. ANSYS, Canonsburg .(2013)
Google Scholar