[1]
National Metal and Material Technology Center, N.S.a.T.D.A., Study and Development of Liquid Cooling Systems for Electric Vehicle Batteries in Thailand 2018.
Google Scholar
[2]
Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9).
Google Scholar
[3]
Yu, L. and Y.P. Li, A flexible-possibilistic stochastic programming method for planning municipal-scale energy system through introducing renewable energies and electric vehicles. Journal of Cleaner Production, 2019. 207: pp.772-787.
DOI: 10.1016/j.jclepro.2018.10.006
Google Scholar
[4]
Zhao, G., et al., A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. Journal of Power Sources, 2021. 501.
DOI: 10.1016/j.jpowsour.2021.230001
Google Scholar
[5]
Li, Y., Z. Zhou, and W.-T. Wu, Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate. Applied Thermal Engineering, 2019. 147: pp.829-840.
DOI: 10.1016/j.applthermaleng.2018.11.009
Google Scholar
[6]
Panchal, S., et al., Design and simulation of a lithium-ion battery at large C-rates and varying boundary conditions through heat flux distributions. Measurement, 2018. 116: pp.382-390.
DOI: 10.1016/j.measurement.2017.11.038
Google Scholar
[7]
Shahjalal, M., et al., A review of thermal management for Li-ion batteries: Prospects, challenges, and issues. Journal of Energy Storage, 2021. 39.
Google Scholar
[8]
Abada, S., et al., Safety focused modeling of lithium-ion batteries: A review. Journal of Power Sources, 2016. 306: pp.178-192.
DOI: 10.1016/j.jpowsour.2015.11.100
Google Scholar
[9]
Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science (New York, N.Y.), 2011. 334: pp.928-35.
DOI: 10.1126/science.1212741
Google Scholar
[10]
Mathew, M., et al., Simulation of lithium ion battery replacement in a battery pack for application in electric vehicles. Journal of Power Sources, 2017. 349: pp.94-104.
DOI: 10.1016/j.jpowsour.2017.03.010
Google Scholar
[11]
Gungor, S., E. Cetkin, and S. Lorente, Thermal and electrical characterization of an electric vehicle battery cell, an experimental investigation. Applied Thermal Engineering, 2022. 212.
DOI: 10.1016/j.applthermaleng.2022.118530
Google Scholar
[12]
Jiang, Z.Y. and Z.G. Qu, Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study. Applied Energy, 2019. 242: pp.378-392.
DOI: 10.1016/j.apenergy.2019.03.043
Google Scholar
[13]
Li, X., F. He, and L. Ma, Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation. Journal of Power Sources, 2013. 238: pp.395-402.
DOI: 10.1016/j.jpowsour.2013.04.073
Google Scholar
[14]
Wu, W., et al., A critical review of battery thermal performance and liquid based battery thermal management. Energy Conversion and Management, 2019. 182: pp.262-281.
DOI: 10.1016/j.enconman.2018.12.051
Google Scholar
[15]
Xing, Y., et al., State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Applied Energy, 2014. 113: pp.106-115.
DOI: 10.1016/j.apenergy.2013.07.008
Google Scholar
[16]
Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): pp.359-67.
DOI: 10.1038/35104644
Google Scholar
[17]
Saechan, P. and I. Dhuchakallaya, Numerical study on the air-cooled thermal management of Lithium-ion battery pack for electrical vehicles. Energy Reports, 2022. 8: pp.1264-1270.
DOI: 10.1016/j.egyr.2021.11.089
Google Scholar
[18]
Zhao, C., et al., Hybrid Battery Thermal Management System in Electrical Vehicles: A Review. Energies, 2020. 13(23).
Google Scholar