Comparation of Calix[6]arene and its Phosphorus Derivative for Complexation of Na+, Cu2+, Ni2+, Pb2+, Fe3+, Cr3+ and 2+ UO22+ Ions

Article Preview

Abstract:

The calix [6] arene and 5,11,17,23,29,35-butyl-25,26,27,28,29,30-diethyl phosphates calix [6] arene (EtPO6) were synthesized and their complexation with different metal ions were investigated. The calix [6] arene and EtPO6 were characterized by IR spectrum. The complexation between the host (calix [6] arene and EtPO6) and the guest (metal ions) were investigated by UV-VIS spectrum and extraction experiments. The results show that the complexation of metal ions by calix [6] aren ranked as Na+ > Cu2+ > Pb2+ > UO22+ > Fe3+ > Cr3+ > Ni2+, and the complexation of metal ions by EtPO6 ranked as UO22+ > Cu2+ > Fe3+ > Pb2+ > Na+ > Cr3+ > Ni2+. Compared with calix [6] aren, the extraction capacity of UO22+, Cu2+, Fe3+, Pb2+, Cr3+ and Ni2+ ions by EtPO6 increased by 37.6%, 10.2%, 10.6%, 9.6%, 2.2%, 4.4%, respectively, while that of Na+ ion decreased by 22.3%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

1026-1032

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.D. Gutsche, R. Muthukrishan, J. Org. Chem. 4905-4906(1978), p.43.

Google Scholar

[2] J.L. Atwood, J. Lehn, J.E.D. Davies, D.D. Macnicol, F. Vogtle, Comprehensive supramolecular chemistry, Elsevier Science. ,Pergamon, (1996).

Google Scholar

[3] J.W. Steed, J. Chem Commu. 1379-1383(2011), p.47.

Google Scholar

[4] C.D. Gutsche, L. Alam, M. Lqbal, J. Incl. Phen. Mol. Rec. Chem. 61-67(1989), p.7.

Google Scholar

[5] V. Bohmer, Angewandte Chem. Int. Ed. Engl. 713-745(1995), p.34.

Google Scholar

[6] M.A. McKervey, M. Pitarch, J. Chem. Commu. 1689-1690(1996), p.14.

Google Scholar

[7] F. Arnaud-Neu, M.J. Schwing-weill, K. Ziat, New J. Chem. 33-37(1987), p.15.

Google Scholar

[8] K. Ohto, S. Inoue, N. Eguchi, T, Shinohara, K. Inoue, Separation Sci. Technol. 1943-1958(2002), p.37.

Google Scholar

[9] J. Ramkumar, S.K. Nayak, B. Maiti, J. memb. Sci. 203-210(2002), p.196.

Google Scholar

[10] Y. Fujikawa, M. Sugahara, E. Ikeda, M. Fukui, J. Radioanal, J. Rad. Nucl. Chem. 399-405(2002), p.252.

Google Scholar

[11] V.K. Jain, S.G. Pillai, R.A. Pandya, Y.K. Agrawal, P.S. Shrivastav, Talanta. 466-475(2005), p.65.

Google Scholar

[12] L.H. Delmau, N. Simon, M.J. Schwing-weill, Chem. Commun., 1627-1628(1998), p.16.

Google Scholar

[13] F. Arnaud-Neu, V. Bohmer, J. F. Dozol, C. Gruttner, R. A. Jakobi, O. Mauprivez, H. Rouquette, M. J. Schwing-weill, N. Simon, W. Vogt, Perkin Trans. 1175-1182 (1996), p.2.

DOI: 10.1039/p29960001175

Google Scholar

[14] F. Arnaud-Neu, J.K. Browne, D. Byrne, Chem. 1175-1182(1999) , p.5.

Google Scholar

[15] S.O. Cherenok, S.I. Miroshnichenko, A.B. Drapailo, 878-883 (2011), p.186.

Google Scholar

[16] F. Arnaud-Neu, S. Barboso, D. Byrne, L.J. Charbonniere, M.J. Schwing-Weill, G. Ulrich, ACS Sym., , 150-164(2000), p.757.

DOI: 10.1021/bk-2000-0757.ch012

Google Scholar

[17] I. Smirnov, M. Karavan, T.I. Efremova, V. Babain, Radio Chemistry. 482–492. (2007), p.49.

Google Scholar

[18] C.D. Gutsche, B. Dhawan, K.H. No, J. Am. Chem. Soc. 3782-3792(1981), p.103.

Google Scholar

[19] W. Zielenkiewicz, A. Marcinowicz, J. Poznanski, S. Cherenok, V. Kalchenko, J. Molecular Liquids. 8-14(2005), p.121.

Google Scholar

[20] I. Smirnov, M. Karavan, V. Babain, I. Kvasnitskiy, E. Stoyanov, Miroshnichenko., Radiochim Acta., 97-102(2007), p.95.

DOI: 10.1524/ract.2007.95.2.97

Google Scholar

[21] M. Karavan, F. Arnaud-Neu, V. Hubscher-Bruder, I. Smirnov, J. Incl. Phe. Macr. Chem. 113-123(2010), p.66.

DOI: 10.1007/s10847-009-9660-4

Google Scholar

[22] D.A. Casteel, S.P. Peri, Sythesis. 691-693(1991), p.9.

Google Scholar

[23] C.D. Gutsche, D.E. Johnston, D.R. Stewart, J. Org. Chem. 3747-3750(1999), p.64.

Google Scholar

[24] L. Jiansen, C. Yuanmeng, L. Xueran, Tetrathedron. 10365-10374. (1999), p.55.

Google Scholar

[25] F. Arnaud-Neu, M. J. Schwing-Weill, J. F. Dozol, Synthetic. Met. 157-164(1997), p.90.

DOI: 10.1016/s0379-6779(98)80001-5

Google Scholar

[26] T. Kagayama, A. Nakano, S. Sakaguchi, Y. Ishii, Org Lett. 407-409(2006), p.8.

Google Scholar

[27] Z. Xu, S. Kim, H.N. Kim, Tetra. Lett. 9147-9154(2007), p.48.

Google Scholar

[28] G. Kostin, A. Borodin, V. Emelyanov, D. Naumov, A. Virovets, M.M. Rohmer, A. Varnek, J. Molecular Structure. 63-71(2007), p.837.

DOI: 10.1016/j.molstruc.2006.10.004

Google Scholar

[29] G.A. Kostin, A.O. Borodin, V.G. Torgov, N.V. Kuratyeva, J. Incl. Phenom. Macrocyclic. Chem. 45-52(2007), p.59.

Google Scholar

[30] Xie Shuibo, Yang J, Chen C, Zhang X, Wang Q, Zhang C, J. Environ. Radioact. 126-133(2008), p.99.

Google Scholar

[31] E. Bakker, Y. Qin, Anal. Chem. 3965-3974(2006), p.78.

Google Scholar

[32] Chen. L, Zhang. J, Zhao. W, He. X, Liu. Y, J. Electroanal. Chem. 106-117 (2006), p.589.

Google Scholar

[33] M. Zareh, B. Malinowska, J. Aoac Int. 147-152(2007), p.90.

Google Scholar

[34] M.R. Yaftian, M. Burgard, D. Matt, C. Wieser, C. Dieleman, J. Incl. Phenom. 127-135(1997), p.27.

Google Scholar

[35] M. Amira, El-Kosasy, Marianne Nebsen, K. Mohamed, Abd El-Rahman, Maissa Y. Salem, Mohamed G. El-Bardicy. Talanta 913-920(2011), p.85.

DOI: 10.1016/j.talanta.2011.04.071

Google Scholar

[36] F. Arnaud-Neu, J. K. Browne, D. Byrne, D. J. Marrs, M. A. Mckervey, P.O. Hagan, M.J. Schwing-Weill, A. Walker, Chem. Eur. J. 175-186(1995), p.5.

DOI: 10.1002/(sici)1521-3765(19990104)5:1<175::aid-chem175>3.0.co;2-p

Google Scholar