3D FEM Simulation of Multipass ECAP Ti-50.8%Ni at Various Temperatures

Article Preview

Abstract:

Equal channel angular pressing (ECAP) is widely studied for its potential to produce ultra-fine grained (UFG) structure in TiNi shape memory alloys (SMA). In the present work, the effect of multipass ECAP parameters on the deformation behavior and strain distribution was investigated, at various deformation temperatures through different planes in the ECAPed billet. Three-dimensional (3D) geometric model with corner angle 120 was designed by finite element method (FEM) software for ECAPing Ti-50.8%Ni by route Bc in DEFORM-3D software. Two methods were used to quantify deformation homogeneity through various planes in the processed billet, including strain standard deviation (SSD) and inhomogenity index (Ci). The simulation results demonstrate that by increasing ECAP passes, the cumulative average strain can increase and obtain UFG structure, but heterogeneity still exist across planes. In addition, temperature has a remarkable effect on homogeneity distribution .As well as Ci exhibits good results for multipass ECAP at various deformation temperature compared to SSD value.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

1204-1210

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Valiev, D. Gunderov, E. Prokofiev, V. Pushin, Y. Zhu, Mater. Trans., 49 (2008) 97-101.

DOI: 10.2320/matertrans.me200722

Google Scholar

[2] Y. Huang, T.G. Langdon, Mater. Today, 16 (2013) 85-93.

Google Scholar

[3] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci., 51 (2006) 881-981.

Google Scholar

[4] V.G. Pushin, V.V. Stolyarov, R.Z. Valiev, N.I. Kourov, N.N. Kuranova, E.A. Prokofiev, L.I. Yurchenko, Ann. Chim. Sci. Mat. , 27 (2002) 77-88.

Google Scholar

[5] Y. Iwahashi, J. Wang , Z. Horita , M. Nemoto, T.G. Langdon, Scripta Mater., 35 (1996) 143-146.

Google Scholar

[6] S.K. Lu, H.Y. Liu , b.L. Yu , Y.L. Jiang , J.H. Su, Proc. Eng. , 12 (2011) 35-420.

Google Scholar

[7] F. Djavanroodi, B. Omranpour, M. Ebrahimi, M. Sedighi, Prog. Nat. Sci., 22 (2012) 452-460.

Google Scholar

[8] E.M. Nahed, A.S. Farouk, A.H. Mohamed , I.A. Mohamed, S.K. Hyoung, Mater. Sci. Eng. A 527 (2010) 1404-1410.

Google Scholar

[9] V. Patil Basavaraj, U. Chakkingal, T.S. Prasanna Kumar, J Mater Process Tech, 209 (2009) 89-95.

Google Scholar

[10] S.C. Yoon, P. Quang, S.I. Hong, H.S. Kim, J Mater Process Tech, 187-188 (2007) 46-50.

Google Scholar

[11] C.J. Luis Pérez, Scripta Mater., 50 (2004) 387-393.

Google Scholar

[12] S. Raghavan, Scripta Mater., 44 (2001) 91-96.

Google Scholar

[13] H.S. Kim, M.H. Seo, S.I. Hong, J Mater Process Tech, 113 (2001) 622-626.

Google Scholar

[14] S.C. Baik, Y. Estrin, H.S. Kim, R.J. Hellmig, Mater. Sci. Eng. A, 351 (2003) 86-97.

Google Scholar

[15] P. Jong-Woo, S. Jin-Yoo, Metall. Mater. Trans A 32 (2001) 3007-3014.

Google Scholar

[16] S. Dumoulin, H.J. Roven, J.C. Werenskiold, H.S. Valberg, Mater. Sci. Eng. A, 410-411 (2005) 248-251.

Google Scholar

[17] R.B. Figueiredo, I.P. Pinheiro, M.T.P. Aguilar, P.J. Modenesi, P.R. Cetlin, J Mater Process Tech, 180 (2006) 30-36.

Google Scholar

[18] H.S. Kim, M.H. Seo, S.I. Hong, Mater. Sci. Eng. A, 291 (2000) 86-90.

Google Scholar

[19] W.J. Zhao, H. Ding, Y.P. Ren, S.M. Hao, J. Wang, J.T. Wang, Mater. Sci. Eng. A, 410 (2005) 348-352.

Google Scholar

[20] F. Djavanroodi, M. Ebrahimi, Mater. Sci. Eng. A, 527 (2010) 1230-1235.

Google Scholar

[21] S. Xu, G. Zhao, G. Ren, X. Ma, Comp. Mater. Sci., 44 (2008) 247-252.

Google Scholar

[22] H.C. Jiang, Z. Fan , C. Xie, Mater. Sci. Eng. A, 485 (2007) 409-414.

Google Scholar

[23] W.J. Kim, J.C. Namkung, Mater. Sci. Eng. A, 412 (2005) 287-297.

Google Scholar

[24] W. Wei, W. Zhang, K.X. Wei, Y. Zhong, G. Cheng, J. Hu, Mater. Sci. Eng. A, 516 (2009) 111-118.

Google Scholar

[25] M. Sellars, W.J. McTegart Acta Mater., 14 (1966) 1136-1138.

Google Scholar

[26] V.G. Pushin, V.V. Stolyarov, R.Z. Valiev, T.C. Lowe, Y.T. Zhu, Mater. Sci. Eng. A, 410 (2005) 386-389.

Google Scholar

[27] I.Y. Khmelevskaya, S.D. Prokoshkin , I.B. Trubitsyna , M.N. Belousov , S.V. Dobatkin , E.V. Tatyanin , A.V. Korotitskiy , V. Brailovski , V.V. Stolyarov , E.A. Prokofiev, Mater. Sci. Eng. A, 481-482 (2008) 119–122.

DOI: 10.1016/j.msea.2007.02.157

Google Scholar

[28] S. Jie , W. Li-ming, Z. Xiao-ning , S. Xiao-gang , J. Hong , F. Zhi-guo , X. Chao-ying , M.H. WU, T. Nonferr. Metal Soc. , 22 (2012) 1839-1848.

Google Scholar

[29] R.Z. Valiev, J. Mater. Sci., 42 (2007) 1483-1490.

Google Scholar

[30] S. Li , M.A.M. Bourke , I.J. Beyerlein, D.J. Alexander, B. Clausen, Mater. Sci. Eng. A, 382 (2004) 217-236.

Google Scholar

[31] I. Balasundar, T. Raghu, Mater. Design 31 (2010) 449-457.

Google Scholar

[32] H. -J. Hu, J. Manuf. Proc., 14 (2012) 181-187.

Google Scholar

[33] F. Zaıri, B. Aour, J.M. Gloaguen, M. Naıt-Abdelaziz, J.M. Lefebvre, Comp. Mater. Sci. , 38 (2006) 202-216.

Google Scholar

[34] Z. Xiaona, H. Lin , L. Yanxiong, Mater. Sci. Eng. A, 535 (2012) 153-163.

Google Scholar

[35] S. Jia-yong, G. Fan, Z. Ji, J. Iron Steel Res. Int., 19 (2012) 54-58.

Google Scholar

[36] R. Würschum, S. Herth, U. Brossmann, Adv. Eng. Mater., 5 (2003) 365-372.

Google Scholar

[37] D.F. Zhang, H.J. Hu, F.S. Pan, M.B. Yang, J.P. Zhang, T. Nonferr. Metal Soc., 20 (2010) 478-483.

Google Scholar