The Research Development of the Mechanism of Fatigue Crack Initiation Based on Microstructure for Offshore Platform

Article Preview

Abstract:

In the capricious marine environment, the offshore platform structure is exposed to the multiaxial fatigue loading in which damage would be formed in different directions and planes. Evolution of the structural damage physical mechanism caused by marine environment load is more complicated. Based on the analysis of a large number of literatures, this paper reviews the research status of the fatigue crack mechanism in China and abroad, and predicts the development direction in the future.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

1325-1330

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Michael D. Sangid and Hans J. Maier: An energy-based microstructure model to account for fatigue scatter in polycrystals. Journal of the Mechanics and Physics of Solids(2010).

DOI: 10.1016/j.jmps.2010.12.014

Google Scholar

[2] Ewing JA and Humfrey JCW: The fracture of metals under repeated alternations of stress. Philos Trans Roy Soc Lond, Ser A: Containing Pap Math Phys Charact(1903), 200, 241.

Google Scholar

[3] Seeger A, Diehl J, Mader S and Rebstock H: Work-hardening and work-softening of face-centred cubic metal crystals. Phil Mag (1957), 2, 323.

DOI: 10.1080/14786435708243823

Google Scholar

[4] Friedel J: A discussion on work-hardening and fatigue in metals. Proc Roy Soc Lond, Ser A (Math Phys Sci) (1957), 242, 145.

Google Scholar

[5] Basinski ZS and Basinski SJ: Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Prog Mater Sci(1992), 36, 89.

DOI: 10.1016/0079-6425(92)90006-s

Google Scholar

[6] Basinski ZS, Korbel AS and Basinski SJ: The temperature dependence of the saturation stress and dislocation substructure in fatigued copper single crystals. Acta Metall(1980), 28, 191.

DOI: 10.1016/0001-6160(80)90068-1

Google Scholar

[7] Coffin LF and Jr. Fatigue: Annual review of materials science, vol. 2. Palo Alto, CA, USA: Annual Review Inc. (1972), p.313.

Google Scholar

[8] Christ HJ: Cyclic stress–strain response and microstructure. In: ASM handbook: fatigue and fracture(1996), p.73–95.

DOI: 10.31399/asm.hb.v19.a0002354

Google Scholar

[9] Tschopp MA, Bartha BB, Porter WJ, Murray PT and Fairchild SB: Microstructure dependent local strain behavior in polycrystals through in-situ scanning electron microscope tensile experiments. Metall Mater Trans A(2009), 40, 2363, 8.

DOI: 10.1007/s11661-009-9938-6

Google Scholar

[10] Clair A, Foucault M, Calonne O, Lacroute Y, Markey L and Salazar M, et al: Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges. Acta Mater (2011), 59, 3116, 23.

DOI: 10.1016/j.actamat.2011.01.051

Google Scholar

[11] Abuzaid W, Sangid MD, Carroll JD, Sehitoglu H and Lambros J: Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J Mech Phys Solids(2012), 60, 1201, 20.

DOI: 10.1016/j.jmps.2012.02.001

Google Scholar

[12] Daly SH: Digital image correlation in experimental mechanics for aerospace materials and structures. In: Encyclopedia of aerospace engineering(2010).

DOI: 10.1002/9780470686652.eae542

Google Scholar

[13] Michael D. Sangid: The physics of fatigue crack initiation. International Journal of Fatigue(2012).

Google Scholar

[14] Mughrabi H, Wang R, Differt K and Essmann U: Fatigue crack initiation by cyclic slip irreversibilities in high-cycle fatigue. Dearborn, MI, USA: ASTM(1983), p.5.

DOI: 10.1520/stp30551s

Google Scholar

[15] Zhang ZF, Wang ZG and Li SX: Fatigue cracking possibility along grain boundaries and persistent slip bands in copper bicrystals. Fatigue Fract Eng Mater Struct(1998), 21, 1307.

DOI: 10.1046/j.1460-2695.1998.00092.x

Google Scholar

[16] Zhang ZF, Wang ZG and Su HH: Observations on persistent slip bands transferring through a grain boundary in a copper bicrystal by the electron channeling contrast in scanning electron microscopy technique. Philos Mag Lett(1999), 79, 233.

DOI: 10.1080/095008399177291

Google Scholar

[17] Zhang ZF and Wang ZG: Interactions of persistent slip bands with a grain boundary on the common primary slip plane in a copper bicrystal. Philos Mag Lett(2000), 80, 149.

DOI: 10.1080/095008300176272

Google Scholar

[18] Zhang ZF and Wang ZG: Comparison of fatigue cracking possibility along large and low-angle grain boundaries. Mater Sci Eng A (Struct Mater: Propert Microstruct Process)(2000), A284, 285.

DOI: 10.1016/s0921-5093(00)00796-6

Google Scholar

[19] Zhang ZF, Wang ZG and Eckert J: What types of grain boundaries can be passed through by persistent slip bands. J Mater Res(2003), 18, 1031.

DOI: 10.1557/jmr.2003.0141

Google Scholar

[20] Zhang ZF and Wang ZG: Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries. Acta Mater(2003), 51, 347.

DOI: 10.1016/s1359-6454(02)00399-3

Google Scholar

[21] Jing ZHONG, Shen ZHONG, Zi-qiao ZHENG, Hai-feng ZHANG and Xian-fu LUO: Fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy. Science direct(2013).

DOI: 10.1016/s1003-6326(14)63061-2

Google Scholar

[22] Michael D. Sangid, Tawhid Ezaz , Huseyin Sehitoglu and Ian M. Robertson: Energy of slip transmission and nucleation at grain boundaries. Science direct(2010).

DOI: 10.1016/j.actamat.2010.09.032

Google Scholar

[23] Tanaka K and Mura T: A dislocation model for fatigue crack initiation. J Appl Mech (1981), 48, 97, 103.

DOI: 10.1115/1.3157599

Google Scholar

[24] Lin MR, Fine ME and Mura T: Fatigue crack initiation on slip bands: theory and experiment. Acta Metall(1986), 34, 619.

DOI: 10.1016/0001-6160(86)90177-x

Google Scholar

[25] Tanaka K and Mura T: Micromechanical theory of fatigue crack initiation from notches. Mech Mater(1982), 1, 63.

Google Scholar

[26] Jianqiu Zhou, Lingling Hu, Hongxi Liub and Menghan Hu: An energy approach to account for crack initiation in nanocrystalline materials. Materials and Design(2013).

Google Scholar

[27] Michael D. Sangid, Hans J. Maier and Huseyin Sehitoglu: The role of grain boundaries on fatigue crack initiation-An energy approach. International Journal of Plasticity( 2010).

DOI: 10.1016/j.ijplas.2010.09.009

Google Scholar

[28] Huang, E.W., Barabash, R.I., Clausen, B., Liu, Y. -L., Kai, J. -J., Ice, G.E., Woods, K.P., Liaw and P.K.: Fatigue-induced reversible/irreversible structural transformations in a Ni-based superalloy. International Journal of Plasticity(2010).

DOI: 10.1016/j.ijplas.2010.01.003

Google Scholar