[1]
Michael D. Sangid and Hans J. Maier: An energy-based microstructure model to account for fatigue scatter in polycrystals. Journal of the Mechanics and Physics of Solids(2010).
DOI: 10.1016/j.jmps.2010.12.014
Google Scholar
[2]
Ewing JA and Humfrey JCW: The fracture of metals under repeated alternations of stress. Philos Trans Roy Soc Lond, Ser A: Containing Pap Math Phys Charact(1903), 200, 241.
Google Scholar
[3]
Seeger A, Diehl J, Mader S and Rebstock H: Work-hardening and work-softening of face-centred cubic metal crystals. Phil Mag (1957), 2, 323.
DOI: 10.1080/14786435708243823
Google Scholar
[4]
Friedel J: A discussion on work-hardening and fatigue in metals. Proc Roy Soc Lond, Ser A (Math Phys Sci) (1957), 242, 145.
Google Scholar
[5]
Basinski ZS and Basinski SJ: Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Prog Mater Sci(1992), 36, 89.
DOI: 10.1016/0079-6425(92)90006-s
Google Scholar
[6]
Basinski ZS, Korbel AS and Basinski SJ: The temperature dependence of the saturation stress and dislocation substructure in fatigued copper single crystals. Acta Metall(1980), 28, 191.
DOI: 10.1016/0001-6160(80)90068-1
Google Scholar
[7]
Coffin LF and Jr. Fatigue: Annual review of materials science, vol. 2. Palo Alto, CA, USA: Annual Review Inc. (1972), p.313.
Google Scholar
[8]
Christ HJ: Cyclic stress–strain response and microstructure. In: ASM handbook: fatigue and fracture(1996), p.73–95.
DOI: 10.31399/asm.hb.v19.a0002354
Google Scholar
[9]
Tschopp MA, Bartha BB, Porter WJ, Murray PT and Fairchild SB: Microstructure dependent local strain behavior in polycrystals through in-situ scanning electron microscope tensile experiments. Metall Mater Trans A(2009), 40, 2363, 8.
DOI: 10.1007/s11661-009-9938-6
Google Scholar
[10]
Clair A, Foucault M, Calonne O, Lacroute Y, Markey L and Salazar M, et al: Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges. Acta Mater (2011), 59, 3116, 23.
DOI: 10.1016/j.actamat.2011.01.051
Google Scholar
[11]
Abuzaid W, Sangid MD, Carroll JD, Sehitoglu H and Lambros J: Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J Mech Phys Solids(2012), 60, 1201, 20.
DOI: 10.1016/j.jmps.2012.02.001
Google Scholar
[12]
Daly SH: Digital image correlation in experimental mechanics for aerospace materials and structures. In: Encyclopedia of aerospace engineering(2010).
DOI: 10.1002/9780470686652.eae542
Google Scholar
[13]
Michael D. Sangid: The physics of fatigue crack initiation. International Journal of Fatigue(2012).
Google Scholar
[14]
Mughrabi H, Wang R, Differt K and Essmann U: Fatigue crack initiation by cyclic slip irreversibilities in high-cycle fatigue. Dearborn, MI, USA: ASTM(1983), p.5.
DOI: 10.1520/stp30551s
Google Scholar
[15]
Zhang ZF, Wang ZG and Li SX: Fatigue cracking possibility along grain boundaries and persistent slip bands in copper bicrystals. Fatigue Fract Eng Mater Struct(1998), 21, 1307.
DOI: 10.1046/j.1460-2695.1998.00092.x
Google Scholar
[16]
Zhang ZF, Wang ZG and Su HH: Observations on persistent slip bands transferring through a grain boundary in a copper bicrystal by the electron channeling contrast in scanning electron microscopy technique. Philos Mag Lett(1999), 79, 233.
DOI: 10.1080/095008399177291
Google Scholar
[17]
Zhang ZF and Wang ZG: Interactions of persistent slip bands with a grain boundary on the common primary slip plane in a copper bicrystal. Philos Mag Lett(2000), 80, 149.
DOI: 10.1080/095008300176272
Google Scholar
[18]
Zhang ZF and Wang ZG: Comparison of fatigue cracking possibility along large and low-angle grain boundaries. Mater Sci Eng A (Struct Mater: Propert Microstruct Process)(2000), A284, 285.
DOI: 10.1016/s0921-5093(00)00796-6
Google Scholar
[19]
Zhang ZF, Wang ZG and Eckert J: What types of grain boundaries can be passed through by persistent slip bands. J Mater Res(2003), 18, 1031.
DOI: 10.1557/jmr.2003.0141
Google Scholar
[20]
Zhang ZF and Wang ZG: Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries. Acta Mater(2003), 51, 347.
DOI: 10.1016/s1359-6454(02)00399-3
Google Scholar
[21]
Jing ZHONG, Shen ZHONG, Zi-qiao ZHENG, Hai-feng ZHANG and Xian-fu LUO: Fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy. Science direct(2013).
DOI: 10.1016/s1003-6326(14)63061-2
Google Scholar
[22]
Michael D. Sangid, Tawhid Ezaz , Huseyin Sehitoglu and Ian M. Robertson: Energy of slip transmission and nucleation at grain boundaries. Science direct(2010).
DOI: 10.1016/j.actamat.2010.09.032
Google Scholar
[23]
Tanaka K and Mura T: A dislocation model for fatigue crack initiation. J Appl Mech (1981), 48, 97, 103.
DOI: 10.1115/1.3157599
Google Scholar
[24]
Lin MR, Fine ME and Mura T: Fatigue crack initiation on slip bands: theory and experiment. Acta Metall(1986), 34, 619.
DOI: 10.1016/0001-6160(86)90177-x
Google Scholar
[25]
Tanaka K and Mura T: Micromechanical theory of fatigue crack initiation from notches. Mech Mater(1982), 1, 63.
Google Scholar
[26]
Jianqiu Zhou, Lingling Hu, Hongxi Liub and Menghan Hu: An energy approach to account for crack initiation in nanocrystalline materials. Materials and Design(2013).
Google Scholar
[27]
Michael D. Sangid, Hans J. Maier and Huseyin Sehitoglu: The role of grain boundaries on fatigue crack initiation-An energy approach. International Journal of Plasticity( 2010).
DOI: 10.1016/j.ijplas.2010.09.009
Google Scholar
[28]
Huang, E.W., Barabash, R.I., Clausen, B., Liu, Y. -L., Kai, J. -J., Ice, G.E., Woods, K.P., Liaw and P.K.: Fatigue-induced reversible/irreversible structural transformations in a Ni-based superalloy. International Journal of Plasticity(2010).
DOI: 10.1016/j.ijplas.2010.01.003
Google Scholar