Investigation of an Isatin Schiff Base as Corrosion Inhibitor in NaCl Solution

Article Preview

Abstract:

Isatin Schiff base, 3-(4-hydroxyphenylimino) indolin-2-one, was investigated as an corrosion inhibitor in NaCl solution. The structure was analysized by X-ray single diffraction. The inhibition and the mechanism of the title compound on the corrosion of high protective Q235A steel in NaCl solution were screened and discussed. The results indicated that it can inhibit the corrosion with moderate inhibition efficiency in different conditions, and the inhibition mechanism of the corrosion inhibiting may be mainly contributed to the adsorption.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

239-242

Citation:

Online since:

August 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.S. Sastri, Corrosion inhibitors principle and application, John Willey & Sons, New York, (1998).

Google Scholar

[2] A. Raman, P. Labine, M.A. Quraishi, Reviews on corrosion inhibitor science and technology, NACE International, Houstan (2004).

Google Scholar

[3] A. Cizek, Materials Performance, 33, 56 (1994).

Google Scholar

[4] J. Cruz, R. Martinez, J. Genesca, E.G. Ochoa, Journal of Electroanalytical Chemistry, 566, 111(2004).

Google Scholar

[5] M.A. Migahed, Materials Chemistry and Physics, 93, 48 (2005).

Google Scholar

[6] M.A. Quraishi, H.K. Sharma, Materials Chemistry and Physics, 78, 18 (2002).

Google Scholar

[7] J. Hong, K. Zhen-Peng, L. Yan, Corrosion Science, 50, 865 (2008).

Google Scholar

[8] K.M. Ismail, Electrochimica Acta, 52, 7811 (2007).

Google Scholar

[9] M. Benabdellah, R. Touzani, A. Aouniti, A. Dafali, S. El Kadiri, B. Hammouti, M. Benkaddour, Materials Chemistry and Physics, 105, 373 (2007).

DOI: 10.1016/j.matchemphys.2007.05.001

Google Scholar

[10] N. Soltani, M. Behpour, S.M. Ghoreishi, H. Naeimi, Corrosion Science, 52, 1351 (2010).

Google Scholar

[11] G. Quartarone, T. Bellomi, A. Zingales, Corrosion Science, 45, 715 (2003).

Google Scholar

[12] S. Issaadi, T. Douadi, A. Zouaoui, S. Chafa, M.A. Khan, G. Bouet, Corrosion Science, 53, 1484 (2011).

DOI: 10.1016/j.corsci.2011.01.022

Google Scholar

[13] J. Fang, J. Li, Journal of Molecular Structure: THEOCHEM, 593, 179 (2002).

Google Scholar

[14] M. Behpour, S.M. Ghoreishi, N. Soltani, M. Salavati-Niasari, Corrosion Science, 51, 1073 (2009).

Google Scholar

[15] A. Yurt, A. Balaban, S. Ustun Kandemir, G. Bereket, B. Erk, Materials Chemistry and Physics, 85, 420 (2004).

DOI: 10.1016/j.matchemphys.2004.01.033

Google Scholar

[16] K. Stanly Jacob, G. Parameswaran, Corrosion Science, 52, 224 (2010).

Google Scholar

[17] G. Chen, H. Su, Y. Song, Y. Gao, J. Zhang, X. Hao, J. Zhao, Research Chemical Intermediates, 39, 3669 (2013).

Google Scholar

[18] M.A. Quraishi, I. Ahamad, A.K. Singh, S.K. Shukla, B. Lal, V. Singh, Materials Chemistry and Physics, 112, 1035 (2008).

Google Scholar

[19] I. Ahamad, R. Prasad, M.A. Quraishi, Corrosion Science, 52, 1472 (2010).

Google Scholar

[20] G. Chen, H.J. Su, M. Zhang, F. Huo, J. Zhang, X.J. Hao, J.R. Zhao, Chemistry Central Jounal, 6, 91 (2012).

Google Scholar

[21] G. Chen, Y. Wang, H.P. He, S.L. Li, L.G. Zhou, X.J. Hao, Acta Botany Yunnan, 29, 712 (2007).

Google Scholar

[22] K.C. Emregül, M. Hayvali, Corrosion Science, 48, 797 (2006).

Google Scholar