Doping Strategies of Bi (Ti0.5Ni0.5)O3 for Increased Performance in BiFeO3

Article Preview

Abstract:

Investigation of crystal structure, dielectric, magnetic and local ferroelectric properties of the diamagnetically substituted (1-x)BiFeO3-xBi (Ti0.5Ni0.5)O3 solid solutions samples have been carried out. The solid solutions have been found to possess a rhombohedrally distorted perovskite structure described by the space group R3c. Compared with pure BiFeO3 compound, both ferroelectric and magnetic properties are much improved by solid solution with Bi (Ti0.5Ni0.5)O3 with saturation hysteresis loops observed. Among all the samples, the x=0.1 samples shows the optimal ferromagnetism with Mr~0.56531emμ/g and the optimal ferroelectricity with Pr~5.767μC/cm2 at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

358-361

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sang Wook Cheong, 2007 Nat. Mater. 6 13.

Google Scholar

[2] Yang Wei-Lu, Chen Chun-Yan, Mao Xiang-Yu, Chen Xiao-Bing, 2012 Chin. Phys. B. 21 047502.

Google Scholar

[3] Gong Yu-Fei, Wu Ping, Liu Wei-Fang, Wang Shou-Yu, Liu Guang-Yao, Ran Guang-Hui, 2012 Chin. Phys. Lett. 29 047701.

Google Scholar

[4] N A Spaldin, M Fiebig 2005 Science 309 391.

Google Scholar

[5] W Eerenstein, N D Mathur and J F Scott, 2006 Nature (London) 442 759.

Google Scholar

[6] D C Jia, J H Xu, H Ke, W Wang, Y Zhou, 2009 J. Eur. Ceram. Soc. 29 3099.

Google Scholar

[7] L Zhai, Y G Shi, J L Gao, S L Tang, Y W Du, 2011 J. Alloys Compd. 509 7591.

Google Scholar

[8] Matthew R. Suchomel, Chris I. Thomas, Mathieu Allix, Matthew J. Rosseinsky and Andrew M. Fogg, 2007 Appl. Phys. Lett. 90 112909.

DOI: 10.1063/1.2737826

Google Scholar

[9] Mo Hua-Li, Jiang Dong-Mei, Wang Chun-Mei, Zhang Wei-Guo, Jiang Ji-Sen, 2013 J. Alloys Comp. 579 187.

Google Scholar

[10] Lin Dun-min, Zheng Qiao-ji, Li Ying, Wan Yang, Li Qiang, Zhou Wei, 2013 J. Eur. Ceram. Soc. 33 3023.

Google Scholar

[11] V. A. Khomchenko, D. A. Kiselev, J. M. Vieira and A. L. Kholkin, 2007 Appl. Phys. Lett. 90 242901.

Google Scholar

[12] Qingyu Xu, Haifa Zai, D. Wu, T. Qiu and M. X. Xu, 2009 Appl. Phys. Lett. 95 112510.

Google Scholar

[13] Luo Bing-Cheng, Chen Chang-Le, Fan Fei, Jin Ke-Xin, 2012 Chin. Phys. Lett. 29 018104.

Google Scholar

[14] Ma Zheng-zheng, Li Jian-Qing, Tian Zhao-Ming, Qiu Yang, Yuan Song-Liu, 2012 Chin. Phys. Lett. 21 107503.

Google Scholar

[15] Soon Mok Choi, Craig J. Stringer, Thomas R. Shrout and Clive A. Randall, 2005 J. Appl. Phys. 98 034108.

Google Scholar

[16] Benjamin Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin and D. Viehland, 2004 Phys. Rev. B, 69 064114.

Google Scholar