Removal of Mercury from Simulated Coal Combustion Flue Gas by Iron Sulfide-AC Adsorbent

Article Preview

Abstract:

Iron sulfide-AC adsorbents were prepared and their mercury removal capabilities were evaluated in the simulated coal combustion flue gases. The FeS2 has much higher mercury removal rate than AC although it has much lower BET surface area than AC. FeS2 also shows higher mercury removal rate than FeS, which is probably due to its higher free sulfur content on the FeS2. The mercury removal capability of AC modified FeS2 decreases with increasing of AC content. Temperature programmed desorption/decomposition process (TPDD) shows FeS and FeS2 have more desorption peak than AC and the main peaks of FeS and FeS2 are at around 240°C. The desorption peaks of AC modified FeS2 are shifted to the higher temperature compared with that of FeS2 and more mercury compositions are desorbed by AC modified FeS2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

603-607

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Md. A. Uddin, T. Yamada, R. Ochiai, E. Sasaoka and S.J. Wu: Energy &Fuels Vol. 22 (2008), pp.2284-2289.

Google Scholar

[2] A.C. Zhang, W.W. Zhang, J. Song, S. Hu, Z.C. Liu, J. Xiang: Chemical Engineering Journal Vol. 236 (2014), pp.29-38.

Google Scholar

[3] D. V. Radisav, P. S. Douglas: Carbon Vol. 39 (2001), pp.3-14.

Google Scholar

[4] A. Murakami, Md. A. Uddin, R. Ochiai, E. Sasaoka, S.J. Wu: Energy &Fuels Vol. 24 (2010), pp.4241-4249.

Google Scholar

[5] J. Rodriguez-Perez, M. A. Lopez-Anton, M. Diaz-Somoano, R. Garcia, M.R. Martinez-Tarazona: Journal of Hazardous Materials Vol. 260 (2013), pp.869-877.

Google Scholar

[6] H.Q. Yang, Z.H. Xu, M.H. Fan, A.E. Bland, R.R. Judkins: Journal of Hazardous Material Vol. 146 (2007), pp.1-11.

Google Scholar

[7] H.C. His, S.G. Chen, M. Rostam-Abadi, M. J. Rood, C.F. Richardson, T.R. Carey, R. Chang: Energy and Fuels Vol. 12 (1998), pp.1061-1070.

Google Scholar

[8] S.H. Lee, Y.O. Park: Fuel Processing Technology Vol. 84 (2003), pp.197-206.

Google Scholar

[9] T. Morimoto, S.J. Wu, Md. A. Uddin, E. Sasaoka: Fuel Vol. 84 (2005), p.1968-(1974).

Google Scholar

[10] S.J. Wu, Md. A. Uddin, S. Nagano, M. Ozaki, E. Sasaoka: Energy and Fuel Vol. 25 (2011), pp.144-153.

Google Scholar

[11] J.W. Choi, G. Chruvally, H.J. Ahn, K.W. Kim, J.H. Ahn: Journal of Power Source Vol. 163 (2006), pp.158-165.

Google Scholar

[12] R. Ochiai, Md. A. Uddin, E. Sasaoka, S.J. Wu: Energy and Fuel Vol. 23 (2009), pp.4734-4739.

Google Scholar

[13] S.J. Wu, N. Oya, M. Ozaki, J. Kawakami, Md. A. Uddin , E. Sasaoka: Fuel Vol. 86 (2007), pp.2857-2863.

Google Scholar