Diversity of Culturable Hydrocarbons-Degrading Bacteria in Petroleum-Contaminated Saltern

Article Preview

Abstract:

Microbial degradation of hydrocarbon in contaminated salterns has attracted increasing attention. However, the diversity of hydrocarbons-degrading bacteria in such environments was still poorly understood. A total of 14 bacteria were isolated from a petroleum-contaminated saltern, which could grow in 3% NaCl. Especially, 2 isolates can survive in 20% NaCl. In addition, all isolates degraded petroleum. However, only 12, 8 and 3 isolates degraded phenanthrene, pyrene and n-Hexadecane, respectively. Phylogenetic analysis showed the isolates belonged to the genera Achromobacter, Rhodococcus, Mycobacteriumi, Dietzia, Sphingobium, Pseudomonas, Ochrobactrum, Bacillu, Rhizobium, Halomonas, Idiomarina, Chromohalobacter and Marinobacter. Hydrocarbon-degrading activity of Achromobacter pulmonis, Bacillus persicus, Rhizobium helanshanense, Halomonas xianhensis and Idiomarina loihiensis in petroleum-contaminated saltern was reported for the first time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1010-1012)

Pages:

29-32

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. J. Beazley, R. J. Martinez, S. Rajan, J. Powell, Y. M. Piceno, L. M. Tom, G. L. Andersen, T. C. Hazen, J. D. Van Nostrand and J. Zhou: PloS one Vol. 7 (2012), p. e41305.

DOI: 10.1371/journal.pone.0041305

Google Scholar

[2] P. Arulazhagan and N. Vasudevan: Mar. Pollut. Bull. Vol. 62 (2011), p.388.

Google Scholar

[3] X. Wang, D. Jin, L. Zhou, L. Wu, W. An, Y. Chen and L. Zhao: Genome Announc. Vol. 2 (2014 ), p. e01215-13.

Google Scholar

[4] X. Wang, Z. Han, Z. Bai, J. Tang, A. Ma, J. He and G. Zhuang: J. Environ. Sci. Vol. 23 (2011), p.1858.

Google Scholar

[5] S. Cuadros-Orellana, M. Pohlschröder and L. R. Durrant: Int. Biodeterior. Biodegradation Vol. 57 (2006), p.151.

Google Scholar

[6] Y. H. Tapilatu, V. Grossi, M. Acquaviva, C. Militon, J. -C. Bertrand and P. Cuny: Extremophiles Vol. 14 (2010), p.225.

DOI: 10.1007/s00792-010-0301-z

Google Scholar

[7] E. V. Pleshakova, E. V. Dubrovskaya and O. V. Turkovskaya: Appl. Biochem. Microbiol. Vol. 44 (2008), p.389.

Google Scholar

[8] R. Margesin, C. Moertelmaier and J. Mair: Int. Biodeterior. Biodegradation Vol. 84 (2013), p.185.

Google Scholar

[9] M. Kleespies, R. M. Kroppenstedt, F. A. Rainey, L. E. Webb and E. Stackebrandt: Int. J. Syst. Bacteriol. Vol. 46 (1996), p.683.

Google Scholar

[10] A. Keck, D. Conradt, A. Mahler, A. Stolz, R. Mattes and J. Klein: Microbiology Vol. 152 (2006), p. (1929).

Google Scholar

[11] J. Ma, L. Xu and L. Jia: Bioresour. Technol. Vol. 140 (2013), p.15.

Google Scholar

[12] E. J. Gudiña, J. F. B. Pereira, R. Costa, J. A. P. Coutinho, J. A. Teixeira and L. R. Rodrigues: J. Hazard. Mater. Vol. 261 (2013), p.106.

Google Scholar

[13] M. M. Lăzăroaie: Electron. J. Biol. Vol. 4 (2008), p.120.

Google Scholar

[14] W. Gao, Z. Cui, Q. Li, G. Xu, X. Jia and L. Zheng: Antonie van Leeuwenhoek Vol. 103 (2013), p.485.

Google Scholar