[1]
X. F. Fan, Z. L. Zhang and S. H. Wu, Design and technological characteristics of the first China-made ultra-supercritical boiler, Journal of Power Engineering, 28(2008) 497-501. In Chinese.
Google Scholar
[2]
Z. H. Hu, X. S. Yang and G. J. Wang, Combustion optimization of 1000 MW ultra-supercritical once-through boiler, Boiler Technology, 39(2008) 42-46. In Chinese.
Google Scholar
[3]
M. H. Xu, J. L. T. Azevedo and M. G. Carvalho, Modeling of the combustion process and NOx emission in a utility boiler, Fuel, 79(2000) 1611-1619.
DOI: 10.1016/s0016-2361(00)00019-3
Google Scholar
[4]
L. B. Thomas, C. Francisco, and C. Sebastien, Coal combustion modelling of large power plant for NOx abatement, Fuel, 86(2007) 2213-2220.
DOI: 10.1016/j.fuel.2007.05.054
Google Scholar
[5]
S. Belosevic, M. Sijercic, and P. Stefanovic, A numerical study of pulverized coal ignition by means of plasma torches in air-coal dust mixture ducts of utility boiler furnaces, Int. J. Heat Mass Trans., 51(2008) 1970-(1978).
DOI: 10.1016/j.ijheatmasstransfer.2007.06.003
Google Scholar
[6]
L. L. Zhao, Q. T. Zhou, and C. S. Zhao, Flame characteristics in a novel petal swirl burner, Combust. Flame, 155(2008) 277-288.
DOI: 10.1016/j.combustflame.2008.04.012
Google Scholar
[7]
Korytnyi, R. Saveliev, M. Perelman, and B. Chudnovsky, Computational fluid dynamic simulations of coal-fired utility boilers: An engineering tool, Fuel, 88(2009) 9-18.
DOI: 10.1016/j.fuel.2008.08.010
Google Scholar
[8]
Y. S. Shen, B. Y. Guo, A. B. Yu, and P. Zulli, A three-dimensional numerical study of the combustion of coal blends in blast furnace, Fuel, 99(2009) 255-263.
DOI: 10.1016/j.fuel.2008.08.013
Google Scholar
[9]
L. Ma, J. M. Jones, and M. Pourkashanian, Modelling the combustion of pulverized biomass in an industrial combustion test furnace, Fuel, 86(2007) 1959-(1965).
DOI: 10.1016/j.fuel.2006.12.019
Google Scholar
[10]
C. G. Yin, L. Rosendahl, and S. K. Kær, Mathematical modeling and experimental study of biomass combustion in a thermal 108 MW grate-fired boiler, Energy Fuels, 22(2008) 1380-1390.
DOI: 10.1021/ef700689r
Google Scholar
[11]
K. D. Tiggesa, F. Klaukea, and K. Busekrus, Conversion of existing coal-fired power plants to oxyfuel combustion: case study with experimental results and CFD simulations, Energy Procedia, 1(2009) 549-556.
DOI: 10.1016/j.egypro.2009.01.073
Google Scholar
[12]
D. Toporov, P. Bocian, and A. Kellermann, Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere, Combust. Flame, 155(2006) 605-618.
DOI: 10.1016/j.combustflame.2008.05.008
Google Scholar
[13]
C. M. Shen, R. Sun, and S. H. Wu, Numerical simulation of pulverized coal combustion in a 1GW dual circle tangential firing single chamber boiler, Proceedings of the CSEE, 26(2006) 51-56. In Chinese.
Google Scholar
[14]
W. G. Zhang, Numerical simulation of air-staged combustion in utility boiler, Power System Engineering, 24(2008) 9-12. In Chinese.
Google Scholar
[15]
L. D. Smoot and P. J. Smith, Coal Combustion and Gasification, New York: Plenum Press, (1989).
Google Scholar
[16]
S. C. Hill and L. D. Smoot, Modeling of nitrogen oxides formation and destruction in combustion systems, Prog. Energ. Combust., 26(2000) 417-458.
DOI: 10.1016/s0360-1285(00)00011-3
Google Scholar
[17]
G. De Soete, Overall reaction rates of NO and N2 formation from fuel nitrogen. 15th Symposium (international) on Combustion, Pittsburgh, PA. 1975, pp.1093-1102.
DOI: 10.1016/s0082-0784(75)80374-2
Google Scholar
[18]
D. Genetti and T. H. Fletcher, Modeling nitrogen release during devolatilization on the basis of chemical structure of coal, Energy Fuels, 13(1999)1082-1091.
DOI: 10.1021/ef990056i
Google Scholar
[19]
S. T. Perry and T. H. Fletcher, Modeling nitrogen evolution during coal pyrolysis based on a global free-radical mechanism, Energy Fuels, 14(2000)1094-1102.
DOI: 10.1021/ef000061i
Google Scholar