[1]
E.O. Hall, The deformation and ageing of mild steel: III. Discussion of results, Proc. Phys. Soc. 64B (1951) 747-753.
DOI: 10.1088/0370-1301/64/9/303
Google Scholar
[2]
N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst., 174 (1953) 25-28.
Google Scholar
[3]
M.F. Ashby, The deformation of plastically non-homogeneous material, Phil. Mag. 21, 170 (1970) 399-424.
Google Scholar
[4]
M.F. Ashby, The deformation of plastically non - homogeneous alloys, in: Strengthening methods in crystals, Science publishers LTD, London 1971, pp.137-190.
Google Scholar
[5]
N.A. Koneva, N.A. Popova, L.I. Trishkina, E.V. Kozlov, The role of geometrically necessary dislocations in the formation of deformation substructures, Izv. Vuzov, Fizika. 1 (2009) 5-14.
Google Scholar
[6]
E.V. Kozlov, N.A. Koneva, L.I. Trishkina, The problem of classifying of dislocation structure components, The fundamental problems of modern materials. 6, 1 (2009) 7-11.
Google Scholar
[7]
V.V. Rybin, Large plastic deformation and fracture of metals, Metallurgy, Moscow, 1986.
Google Scholar
[8]
N.A. Koneva, D.V. Lichagin, L.A. Tepliakova, E.V. Kozlov, Dislocation-disclination substructures and strengthening, in: V.I. Vladimirov (Eds.), Theoretical and experimental study of disclination, FTI named A.F. Joffe, Leningrad, 1986, pp.116-126.
Google Scholar
[9]
N.A. Koneva, E.V. Kozlov, The physical nature of the plastic deformation staging, in: Academician V.E. Panin (Eds.), Structural levels of plastic deformation and fracture, Nauka. SB RAS, Novosibirsk, 1990, pp.123-186.
Google Scholar
[10]
N.A. Koneva, S.P. Zhukovsky, I.A. Lapsker et al, The role of internal surfaces of division at formation of dislocation structure and mechanical properties in single phase polycrystals, in: A.E. Romanov (Eds.), Physics of defects in the surface layers of materials, FTI named A.F. Joffe, Leningrad, 1989, pp.113-131.
Google Scholar
[11]
E.V. Kozlov, N.A. Koneva, A.N. Zhdanov etc., The structure and deformation resistance of ultrafine-grained fcc metals and alloys, Phys. Mesomech. 7, 4 (2004) 93-113.
Google Scholar
[12]
E.V. Kozlov, L.I. Trishkina, N.A. Popova, N.A. Koneva, Role of dislocation physics in multi-level approach to plastic deformation, Phys. Mesomech. 14, 3 (2011) 95-110.
DOI: 10.1016/j.physme.2011.12.007
Google Scholar
[13]
N.A. Koneva, N.A. Popova, E.V. Kozlov, The influence of grain size on the scalar dislocation and the junction disclinations density in UFG metals, Advanced Mater. 12 (2011) 238-243.
Google Scholar
[14]
E.V. Kozlov, N.A. Popova, N.A. Koneva Grain structure, geometrically necessary dislocations and second-phase particles in polycrystalline micro-and meso leves, Phys. Mesomech. 12, 4 (2009) 93-106.
DOI: 10.1016/j.physme.2009.12.010
Google Scholar
[15]
N.A. Koneva, N.A. Popova, E.V. Kozlov, The grain size and fragments of the microlevel as a factor in determining of the dislocation of and disclinations densities, Izv. RAN, Seriya fizicheskaya. 75, 5 (2011) 709-712.
Google Scholar
[16]
N.A. Koneva, N.A. Popova, A.N. Zhdanov, L.N. Ignatenko, E.V. Kozlov, The dependence of grain size, dislocation density and internal stress on the degree of plastic deformation of UFG copper, Fundamental problems of modern materials science. 2 (2004) 17-20.
DOI: 10.1002/3527602461.ch6f
Google Scholar
[17]
R.Z. Valiev, Yu.F. Ivanov, L.N. Ignatenko, N.A. Koneva, N.A. Popova, A.V. Paul, E.V. Kozlov, Evolution of defect structure of microcrystalline copper deformed by pressing, in: V.A. Likhachev (Eds.), Function-mechanical properties of materials and computer design, Izd-vo ADVELA, Pskov, 1993, pp.215-220.
Google Scholar