[1]
D. Pye Practical nitriding and ferritic nitrocarburizing. Materials Park, OH: ASM International, 2003.
Google Scholar
[2]
Yu.M. Lakhtin, Ya.D. Kogan, G.I. Shpis, et al., Teoriya i tekhnologiya azotirovaniya [Theory and technology of nitriding]. Metallurgiya, Moscow, 1991.
Google Scholar
[3]
E.V. Kozlov, N.A. Popova, V.A. Malinovskaya, A.M. Apasov, Fazovyi sostav i gradientnaya struktura nitrotsementovannoi stali 20Kh2N4FA posle nizkogo otpuska [Phase content and gradient structure of type 20Kh2N4FA case-hardened steel after low-temperature tempering]. Steel in Translation. 8 (2005) 26–29.
Google Scholar
[4]
P.M. Shchanin, N.N. Koval', I.M. Goncharenko, S.V. Grigor'ev, Azotirovanie konstruktsionnykh stalei v gazovykh razryadakh nizkogo davleniya [Constructional steel nitriding in low-pressure gas discharge]. Physics and Chemistry of Materials Treatment, 3 (2001) 16-19.
Google Scholar
[5]
I.M. Goncharenko, Y.F. Ivanov, S.V. Grigorev, N.N. Koval, P.M. Shanin, Si-Ze Yng, Regularity of formation of a zone diffusion of saturation at nitration of steel in plasma of the gas discharge. Physical Mesomechanics. Special release (2004) 201-204.
Google Scholar
[6]
V.A. Klimenov, O.N. Nekhoroshkov, P.V. Uvarkin, Zh.G. Kovalevskaya and Yu.F. Ivanov, Struktura, Fazovyi sostav i svoistva stali 60, podvergnutoi ul'trazvukovoi finishnoi obrabotke [Structure, phase composition, and properties of type 60 steel exposed to ultrasonic finishing]. Physical Mesomechanics. 9 (2006) 173-176.
Google Scholar
[7]
V.A. Klimenov, Zh.G. Kovalevskaya, O.B. Perevalova, Yu.F. Ivanov, V.A. Kukareko, Effect of ultrasonic surface treatment of steel 40Kh13 on the microstructure of nitrided layer formed by high-intensity low-energy implantation with nitrogen ions. The Physics of Metals and Metallography, 102 (2006) 578-586.
DOI: 10.1134/s0031918x06120040
Google Scholar
[8]
Zh. G. Kovalevskaya, Yu.F. Ivanov, O.B. Perevalova, V.A. Klimenov and P.V. Uvarkin, Study of Microstructure of Surface Layers of Low-Carbon Steel after Turning and Ultrasonic Finishing. The Physics of Metals and Metallography, 114 (2013) 41–53.
DOI: 10.1134/s0031918x12110105
Google Scholar
[9]
V.A. Klimenov, O.N. Nekhoroshkov, P.V. Uvarkin, Zh.G. Kovalevskaya, Yu.F. Ivanov, Struktura, fazovyi sostav i svoistva stali 60, podvergnutoi ul'trazvukovoi finishnoi obrabotke [Structure, phase content and properties of type 60 steel after ultrasonic finishing]. Fizicheskaya mezomekhanika. Special release 9 (2006) 173-176.
Google Scholar
[10]
Zh.G. Kovalevskaya, Yu.F. Ivanov, P.V. Uvarkin, Forming modified layers on the surface of steel during ultrasonic finishing Metal 2007: Proceedings 16th International Metallurgical and Materials, Ostrava, Czech Republic, 22.-24.5.2007. Ostrava, 2007, pp.72-78.
Google Scholar
[11]
Zhu Qifang Sun Zeming Ma Tongda, V.A. Klimenov, V.Yu. Borozna, Zhu Baohong, Effect of Ultrasonic Surface Peening on Fatigue Property of 7B04 High Strength and Toughness Aluminum AlloyMaterials Science Forum Vols. 654-656 (2010) 1892-1895© (2010) Trans Tech Publications, Switzerland.
DOI: 10.4028/www.scientific.net/MSF.654-656.1892
Google Scholar
[12]
A.V. Panin, Yu.I. Pochivalov, A.A. Sonb, M.S. Kazachenok, The effect of ultrasonic treatment on mechanical behavior of titanium and steel specimens. Theoretical and Applied Fracture Mechanics 41(2004), 1–3 163–172.
DOI: 10.1016/j.tafmec.2003.11.013
Google Scholar
[13]
Mei Yang, Simulation of the Ferritic Nitriding Process. International Heat Treatment and Surface Engineering, 5 (2011) 122-126.
Google Scholar