Influence of Crystal Orientation on Ni3Fe Dislocation Structure Evolution

Article Preview

Abstract:

The dislocation structure and mechanical properties of Ni3Fe single crystals with the short range order were investigated. The laws of the dislocation structure evolution of single crystals at different deformation axis orientations were analysed. Correlation of the dislocation structure evolution with the deformation stages for the single crystals with the deformation axis orientations [001], [11], [011] and [1.8.12] was established. The role of the slipping plane numbers in the substructure evolution was revealed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-61

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Steeds and M. Hazzledine, Dislocation configuration in deformed copper and copper 10% (atomic) aluminum alloy, J. Disc. Faraday Soc. 38 (1964) 103-144.

DOI: 10.1039/df9643800103

Google Scholar

[2] U. Essmann, Die Versetzungsanordnung in plastisch verformten kupferein kristallen, J. Phys. stat. sol. 2, 12 (1965) 723-747.

DOI: 10.1002/pssb.19630030512

Google Scholar

[3] H. Mughrabi, Electron-microscope investigation of the dislocation arrangement of deformed copper single crystals the stress applied state, J. Z. Phys. 18 (1970) 897-929.

DOI: 10.1080/14786436808227751

Google Scholar

[4] W. Vorbrugg, H. Goetting, H.Gh. Schwink, Work – hardening and surface investigations of copper single crystals oriented to multiple glide, J. Phys. stat. sol. 46 (1971) 257-264.

DOI: 10.1002/pssb.2220460123

Google Scholar

[5] S.M.L Sastry, The plastic deformation of [001] – oriented disordered Cu3Al single crystals, J. Mater. Sci. Eng. 43, 2 (1980) 231-234.

DOI: 10.1016/0025-5416(80)90107-x

Google Scholar

[6] C.S Pande, P.H. Hazzledine, Dislocation arrays in Cu–Al alloys I, II, J. Phil. Mag. 24 (1971) 1039-1410.

DOI: 10.1080/14786437108217420

Google Scholar

[7] H.P. Karnthaler, B. Schugert, Dislocation structures in plastically deformed, disordered Ni3Fe, Strength Met. and Alloys. Proc. 5th Int. Conf. Aachen. 1 (1980) 205-210.

DOI: 10.1016/b978-1-4832-8412-5.50042-4

Google Scholar

[8] L.A. Teplyakova, T.S. Kunitsyna, N.A. Koneva, E.V. Kozlov, Regularities of formation of network dislocation structure in Ni3Fe alloy single crystals, J. Bulletin of the Russian Academy of Sciences: Physics. 68, 10 (2004) 1629-1635.

Google Scholar

[9] E.V. Kozlov, N.A. Konevа, L.I. Trishkina, Dislocation - disclination substructure formed at large plastic deformation of fcc polycrystals: evolution and communication with the flow stress // Proceedings of Higher Education. Physics. 51, 2 (2014) 38-44.

DOI: 10.1007/s11182-014-0223-9

Google Scholar

[10] L.A. Teplyakova, T.S. Kunitsyna, E.V. Kozlov, Distribution of slip traces in single crystals of Ni3Fe. J. Proceedings of Higher Education. Physics. 4 (1998) 51-56.

DOI: 10.1007/bf02766532

Google Scholar

[11] J. Hirt, I. Lothe, Theory of dislocations, Clarendon Press, Oxford, 1972.

Google Scholar

[12] L.A. Teplyakova, T.S. Kunitsyna, N.A. Koneva, V.A. Starenchenko, E.V. Kozlov, Macrofragmentation of shear deformation in single crystals Ni3Fe under the active plastic deformation, J. Phys. Mesomech. 3, 5 (2000) 77-82.

Google Scholar

[13] N.A. Koneva, D.V. Lychagin, L.A. Teplyakova, L.I. Trishkina, Disclination and rotational deformity of solids, PTI, Leningrad. (1988) 103-113.

Google Scholar

[14] N.A. Koneva, E.V. Kozlov. Advanced Materials. Structure and methods of study. Textbook, TGU, Tolyatti. (2006) 267-320.

Google Scholar