Heteroepitaxial Growth of Ge-Rich SiGe Films on Si for Solar Cells

Article Preview

Abstract:

Germanium-rich silicon-germanium (Si1-xGex: 0.98≤x≤1) films were epitaxially grown on Si (001) substrate by reactive thermal chemical vapor deposition at low temperature. Si2H6 and GeF4 were used as source gases. The effect of gas flow ratio between Si2H6 and GeF4 was studied to optimize the film quality. The results indicated that Si1-xGex (x≥0.99) epilayer can be prepared directly on Si wafer at 350°C with a threading dislocation density of ~7×105/cm2 and surface RMS roughness of 1.0 nm. Hall-effect and conductivity measurements revealed that the epilayer was p-type conduction with the hall mobility of 767 cm2/Vs and the hole concentration of 6.08×1016/cm3. Those results indicated the Ge-rich Si1-xGex was an excellent candidate for bottom cells of multijunction solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

216-219

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. A. Healy, M. A. Green, Sol. Energy Mater. Sol. Cells 28 (1992) 273.

Google Scholar

[2] E. Borne, J. P. Boyeaux, A. Laugier, First WCPEC, 1994, p.1637.

Google Scholar

[3] A. Gutjahr, I. Silier, N. Rollbuhler, M. Konuma, F. Banhart, K. Said, J. Poortmans, Twenty-Sixth PVSC, 1997, p.759.

DOI: 10.1109/pvsc.1997.654200

Google Scholar

[4] J. X. Chen, F. Ernst, P. O. Hansson, E. Bauser, J. Cryst. Growth 118 (1992) p.452.

Google Scholar

[5] M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, E. A. Fitzgerald, Appl. Phys. Lett. 72 (1998) 1718.

Google Scholar

[6] J. M. Hartmann, L. Baud, G. Rolland, J. M. Fabbri, T. Billon, ECS Transactions 3 (2006) 219.

Google Scholar

[7] T. H. Loh, H. S. Nguyen, C. H. Tung, A. D. Trigg, G. O. Lo, N. Balasubramanian, D. L. Kwong, S. Tripathy, Appl. Phys. Lett. 90 (2007) 092108.

DOI: 10.1063/1.2709993

Google Scholar

[8] D. Choi, Y. Ge, J. S. Harris, J. Cagnon, S. Stemmer, J. Cryst. Growth 310 (2008) 4273.

Google Scholar

[9] H. -W. Kim, K. W. Shin, G. -D. Lee, E. Yoon, Thin Solid Films 517 (2009) 3990.

Google Scholar

[10] Y. H. Tan, C. S. Tan, Thin Solid Films, 520 (2012) 2711.

Google Scholar

[11] Masaji Yamamoto, Jun-ichi Hanna, Masato Miyauchi, Appl. Phys. Lett. 63 (1993) 2508.

Google Scholar

[12] Masaji Yamamoto, Yoshiharu Takada, Junichi Hanna, Appl. Phys. Lett. 64 (1994) 3467.

Google Scholar

[13] Jun-ichi Hanna, Kousaku Shimizu, J. Organomet. Chem. 611 (2000) 531.

Google Scholar

[14] B. O. Kolbesen, J. Mahlib and D. Possner, ECS Transactions 11 (2007) 195.

Google Scholar

[15] A. Abbadie, F. Allibert, F. Brunier, Solid-State Electron. 53 (2009) 850.

Google Scholar

[16] H. K. Shin, D. J. Lockwood, J. –M. Baribeau, Solid State Commun. 114 (2000) 505.

Google Scholar

[17] J. M. Hartmann, B. Gallas, J. Zhang, J. J. Harris, Semicond. Sci. Technol. 15 (2000) 370.

Google Scholar

[18] K. Tao, Y. Kurosawa, J. Hanna, Appl. Phys. Lett. 102 (2013) 182109.

Google Scholar