Data processing with an Improved Hybrid Optimization Algorithm Base on PSO-GA

Article Preview

Abstract:

This paper develops an improved hybrid optimization algorithm based on particle swarm optimization (PSO) and a genetic algorithm (GA). First, the population is evolved over a certain number of generations by PSO and the best M particles are retained, with the remaining particles excluded. Second, new individuals are generated by implementing selection, crossover and mutation GA operators for the best M particles. Finally, the new individuals are combined with the best M particles to form new a population for the next generation. The algorithm can exchange information several times during evolution so that the complement of two algorithms can be more fully exploited. The proposed method is applied to fifteen benchmark optimization problems and the results obtained show an improvement over published methods. The impact of M on algorithm performance is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

404-412

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Holland J.H., Adaptation of Natural and Artificial Systems. Ann Arbor, MI: The University of Michigan Press, (1975).

Google Scholar

[2] Kaya, I., A genetic algorithm approach to determine the sample size for control charts with variables and attributes, Expert Systems with Applications, 2009, 36(5), 8719-8734.

DOI: 10.1016/j.eswa.2008.12.011

Google Scholar

[3] De Giovanni, L., Pezzella, F. , An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem, European Journal of Operational Research, 2010, 200(2), 395-408.

DOI: 10.1016/j.ejor.2009.01.008

Google Scholar

[4] Abbasgholipour, M., Omid, M., Keyhani, A., Mohtasebi, S.S., Color image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditions, Expert Systems with Applications, 2011, 38(4), 3671-3678.

DOI: 10.1016/j.eswa.2010.09.023

Google Scholar

[5] Shiwei Yu, Kejun Zhu, Haixiang GUO, A hybrid MPSO-BP structure adaptive algorithm for RBFNs, Neural Computation& Applications , 2009(18), 769-779.

DOI: 10.1007/s00521-008-0214-2

Google Scholar

[6] Wang, K., Salhi, A., & Fraga, E. S., Process design optimization using embedded hybrid visualization and data analysis techniques within a genetic algorithm optimisation framework, Chemical Engineering and Processing, 2004, 43(5), 657-669.

DOI: 10.1016/j.cep.2003.01.001

Google Scholar

[7] Kennedy, J., Eberhart, R.C., Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 1995, p.1942-(1947).

Google Scholar

[8] Shayeghi H., Jalili A., Shayanfar H. A., Multi-stage fuzzy load frequency control using PSO, Energy Conversion and Management, 2008, 49(10), 2570-2580.

DOI: 10.1016/j.enconman.2008.05.015

Google Scholar

[9] Kennedy J., The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International conference on Evolutionary Computation, Indianapolis, IN, IEEE Service Center, Piscataway, NJ. 1997, pp.303-308.

DOI: 10.1109/icec.1997.592326

Google Scholar

[10] Trelea I.C., The particle swarm optimization algorithm: convergence analysis and parameter selection, Information Processing Letters, 2003, 85(6), 317-325.

DOI: 10.1016/s0020-0190(02)00447-7

Google Scholar

[11] Van den Bergh, F., Engelbrecht, A.P., A cooperative approach to particle swarm optimization, IEEE Transactions on Evolutionary Computation, 2004, 8(3), 225-239.

DOI: 10.1109/tevc.2004.826069

Google Scholar

[12] Premalatha K., Natarajan A.M., Hybrid PSO and GA for Global Maximization, The International Journal of Open Problems in Computer Science and Mathematics, 2009, 2(4), 597-608.

Google Scholar

[13] Shi X.H., Liang Y.C., Lee H.P., et al. , An improved GA and a novel PSO-GA-based hybrid algorithm, Information Processing Letters, 2005, 93(5), 255-261.

DOI: 10.1016/j.ipl.2004.11.003

Google Scholar

[14] Gandelli,A., Grimaccia, F., Mussetta M., Development and validation of different hybridization strategies between GA and PSO. In: Proceedings of the IEEE Congress on Evolutionary Computation, Singapore, 2007, pp.2782-2785.

DOI: 10.1109/cec.2007.4424823

Google Scholar

[15] Yao,K., Li, F., & Liu, X., Hybrid algorithm based on PSO and GA, Computer Engineering and Applications, 2007, 43(6) , 62-64, In Chinese.

Google Scholar

[16] Kao Y., Zahara E., A hybrid genetic algorithm and particle swarm optimization for multimodal functions, Applied Soft Computing, 2008, 8(2), 849-857.

DOI: 10.1016/j.asoc.2007.07.002

Google Scholar

[17] Shiwei Yu, Yi-Ming Wei, Ke Wang, Energy demand projection of China using a path-coefficient analysis and PSO-GA approach, Energy Conversion and Management, 2012, 58(1), 142-153.

DOI: 10.1016/j.enconman.2011.08.015

Google Scholar

[18] Juang C.F., A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Recurrent Network Design, IEEE transactions on systems, man, and cybernetics-Part B: cybernetics, 2004, 34(2), 997-1004.

DOI: 10.1109/tsmcb.2003.818557

Google Scholar

[19] Kim D.H., Hirota ,K., Vector control for loss minimization of induction motor using GA–PSO, Applied Soft Computing, 2008, 8 (4), 1692-1702.

DOI: 10.1016/j.asoc.2006.09.001

Google Scholar

[20] Shiwei Yu, Yi-Ming Wei, Ke Wang, A PSO-GA optimal model to estimate primary energy demand of China, Energy Policy, 2012, 42, 329-340.

DOI: 10.1016/j.enpol.2011.11.090

Google Scholar

[21] Kennedy, J., Eberhart, R.C., Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 1995, p.1942-(1947).

Google Scholar

[22] Clerc M., Kennedy J., The particle swarm: explosion stability and convergence in a multi-dimensional complex space, IEEE Transactions on Evolutionary Computation, 2002, 6(1), 58-73.

DOI: 10.1109/4235.985692

Google Scholar

[23] Shi Y.H., Eberhart R., A modified particle swarm optimizer, Ion: The 1998 IEEE International Conference on Evolutionary Computation, ICEC'98, Anchorage, AK, USA, 1998, pp.69-73.

DOI: 10.1109/icec.1998.699146

Google Scholar

[24] Pérez-Vázquez, M.E., Gento-Municio, A.M., Lourenço H.R., Solving a concrete sleepers production scheduling by genetic algorithms, European Journal of Operational Research, 2007, 179(3), 605-620.

DOI: 10.1016/j.ejor.2005.03.070

Google Scholar

[25] Musharavati F., Hamouda A.S.M., Modified genetic algorithms for manufacturing process planning in multiple parts manufacturing lines, Expert Systems with Applications, 2011, 38(9), 10770-10779.

DOI: 10.1016/j.eswa.2011.01.129

Google Scholar

[26] Deb K., Beyer H., Self-adaptive genetic algorithms with simulated binary crossover, Evolutionary Computation, 2001, 9 (2), 197-221.

DOI: 10.1162/106365601750190406

Google Scholar