Applied Technology in an Adaptive Particle Filter Based on Interval Estimation and KLD-Resampling

Article Preview

Abstract:

Particle filter as a sequential Monte Carlo method is widely applied in stochastic sampling for state estimation in a recursive Bayesian filtering framework. The efficiency and accuracy of the particle filter depends on the number of particles and the relocating method. The automatic selection of sample size for a given task is therefore essential for reducing unnecessary computation and for optimal performance, especially when the posterior distribution greatly varies overtime. This paper presents an adaptive resampling method (IE_KLD_PF) based on interval estimation, and after interval estimating the expectation of the system states, the new algorithm adopts Kullback-Leibler distance (KLD) to determine the number of particles to resample from the interval and update the filter results by current observation information. Simulations are performed to show that the proposed filter can reduce the average number of samples significantly compared to the fixed sample size particle filter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

452-458

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Dandach, F. Abdallah, J. D. Miras, A. Charara, in: Vehicle Dynamics Estimation Using Box Particle Filter. 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV). Guangzhou, China. (2012).

DOI: 10.1109/icarcv.2012.6485144

Google Scholar

[2] Olivier Cappe, Simon J. Godsill, Eric Moulines. An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo. Proceedings of the IEEE. Vol. 95(2007), pp.899-924.

DOI: 10.1109/jproc.2007.893250

Google Scholar

[3] F. Abdallah, A. Gning, P. Bonnifait. Box particle filtering for nonlinear state estimation using interval analysis. Automatica. Vol. 44(2008), p.807–815.

DOI: 10.1016/j.automatica.2007.07.024

Google Scholar

[4] D. Fox. Adapting the sample size in particle filters through KLD-sampling. Int. J. Robot. Res. Vol. 22(2003), pp.985-1003.

DOI: 10.1177/0278364903022012001

Google Scholar

[5] L. Jing, P. Vadakkepat. Interacting MCMC particle filter for tracking maneuvering target. Digital Signal Process. Vol. 20(2010), p.561–574.

DOI: 10.1016/j.dsp.2009.08.011

Google Scholar

[6] T. Li, T.P. Sattar, S. Sun. Deterministic resampling: unbiased sampling to avoid sample impoverishment in particle filters. Signal Process. Vol. 92(2012), p.1637–1645.

DOI: 10.1016/j.sigpro.2011.12.019

Google Scholar

[7] M.K. Pitt, N. Shephard. Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc. Vol. 94(1999), p.590–599.

DOI: 10.1080/01621459.1999.10474153

Google Scholar

[8] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. Vol. 50(2002), p.174–188.

DOI: 10.1109/78.978374

Google Scholar

[9] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A Tutorial on Particle Filters for Online Nolinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing. February, Vol. 50(2002), pp.174-188.

DOI: 10.1109/78.978374

Google Scholar

[10] M. Pitt, N. Shephard. Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Assoc., Vol. 94(1999), pp.590-599.

DOI: 10.1080/01621459.1999.10474153

Google Scholar

[11] C. Kwok, D. Fox, M. Meila. Adaptive real-time particle filters for robot localization. IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan. Vol. 2(2003), p.2836–2841.

DOI: 10.1109/robot.2003.1242022

Google Scholar