[1]
X. Zhu, W. Ding, P.S. Yu, C. Zhang. One-class learning and concept summarization for data streams. Knowledge and Information Systems, 2011: 1-31.
Google Scholar
[2]
Y. Zhang, X. Li, M. Orlowska. One-Class Classification of Text Streams with Concept Drift. In: Proceedings of the 2012 IEEE International Conference on Data Mining Workshops (ICDMW'12), 2012: 116-125.
DOI: 10.1109/icdmw.2008.54
Google Scholar
[3]
F. Denis, R. Gilleron, F. Letouzey. Learning from Positive and Unlabeled Examples. Theoretical Computer Science, 2005, 348(1): 70-83.
DOI: 10.1016/j.tcs.2005.09.007
Google Scholar
[4]
Juan José García Adeva, Juan Manuel Pikatza Atxa. Intrusion detection in web applications using text mining. Engineering Applications of Artificial Intelligence, Volume 20 Issue 4, June 2007, 555-566.
DOI: 10.1016/j.engappai.2006.09.001
Google Scholar
[5]
B. Calvo, P. Larrañaga, J. Lozano. Learning Bayesian Classifiers from Positive and Unlabeled Examples. Pattern Recognition Letters, 2007, 28(16): 2375-2384.
DOI: 10.1016/j.patrec.2007.08.003
Google Scholar
[6]
Charles Elkan, Keith Noto. Learning classifiers from only positive and unlabeled data. KDD '08 Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, 2008, 213-220.
DOI: 10.1145/1401890.1401920
Google Scholar
[7]
Jiazhen He, Yang Zhang, Xue Li, YongWang. Bayesian Classifiers for Positive Unlabeled Learning. WAIM'11: Proceedings of the 12th international conference on Web-age information management, 2011, 81-93.
DOI: 10.1007/978-3-642-23535-1_9
Google Scholar
[8]
Charles Elkan, Keith Noto. Learning classifiers from only positive and unlabeled data. KDD'08 Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, 2008, 213-220.
DOI: 10.1145/1401890.1401920
Google Scholar
[9]
Wenke Lee,J. Stolfo. A data mining framework for constructing features and models for intrusion detection systems. Doctoral Dissertation, Columbia University New York, 1999, 135-160.
Google Scholar